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Direct numerical simulation of a passive scalar in fully developed turbulent channel flow is

used to show that Nusselt number is not only a function of Reynolds and Prandtl number,

but also depends on properties of a heating wall. Variable thickness of the heating wall

and variable heater properties, combined in a fluid–solid thermal activity ratio

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf cpf lf =rwcpwlw

q
, can change the Nusselt number of the turbulent channel flow for

up to 1% at the same Reynolds and Prandtl number and at the same wall heat flux.

1. INTRODUCTION

Thermal conditions at a heating wall in contact with turbulent flow are known
to be dependent on wall-side unsteady conduction. Such a conjugate heat transfer
problem was studied by Polyakov [1], who demonstrated analytically that tem-
perature fluctuations near a wall differ for different fluid–solid combinations. This
finding was later confirmed experimentally by Iritani et al. [2], Khabakhpasheva [3],
Hetsroni and Rozenblit [4], and Mosyak et al. [5]. Computational strategies applied
to reveal the magnitude of temperature fluctuations at the fluid–solid interface are
described by Kasagi et al. [6], who performed the analysis with a 2-D unsteady
turbulent model. Later, Tiselj et al. [7] repeated the calculations with a more accurate
direct numerical simulation (DNS).

The conjugate turbulent heat transfer near a heating wall depends on the wall
thickness dw and on the material properties of the wall and the fluid, which can be
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expressed in a thermal activity ratio K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf cpflf=rwcpwlw

q
(Kasagi et al. [6]). Based

on values of K and dw, two limiting cases of the conjugate turbulent heat transfer
exist at the same Reynolds and Prandtl numbers and at the same wall heat flux [6, 7]:

1. The fluid–solid combination, where the thermal activity ratio tends to zero
ðK ¼ 0Þ and the wall thickness remains larger than zero ðdw > 0Þ, does not
allow the turbulent temperature fluctuations in the fluid to enter the wall,
i.e., the wall temperature does not fluctuate; this type of boundary condition
is denoted as nonfluctuating wall temperature boundary condition.

2. The heating wall thickness dw does not play a significant role in the infinite
thermal activity ratio ðK ¼ 1Þ. In that case, wall temperature follows tur-
bulent temperature fluctuations of the fluid, i.e., the temperature fluctua-
tions induced by turbulence exist also inside the wall. This type of boundary
condition is denoted as fluctuating wall temperature boundary condition.

The type of the actual thermal condition for a particular fluid–solid system with a
given thermal activity ratio K and a heating wall thickness dw is always somewhere
between the two limiting cases and can be obtained from the studies of Kasagi et al.
[6] and Tiselj et al. [7]. Both types of limiting boundary conditions were approached
in the experimental work of Mosyak et al. [5]. They used a water flume heated with
a thick copper plate ðK ¼ 0:044Þ for the nonfluctuating wall temperature case
ðK ¼ 0; dw > 0Þ. For the K ¼ 1 case, they heated a water flume with a very thin
(0.05-mm-thick) steel foil ðK ¼ 0:12Þ. In experiments with air, the boundary condi-
tion is always very close to the nonfluctuating wall temperature case, due to small
values of K (�10�3). A near-wall two-equation turbulence model was used by

NOMENCLATURE

a1; a2; b1; b2 coefficients of Taylor expansion

cp specific heat at constant pressure

dw heating wall thickness

K thermal activity

ratio ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rfcpflf=rwcpwlw

q� �
Nu Nusselt

number ¼ �ð2d=lÞqw=ðyB � ywÞ½ �
Pr Prandtl number ð¼ rcpn=lÞ
qw time-averaged wall heat flux

Re Reynolds number

Ret friction Reynolds number

t time

T temperature

Tt friction

temperature ð¼ qw=rfcpfutÞ
u velocity ½¼ ðu; v;wÞ�
ut friction velocity

�
¼

ffiffiffiffiffiffiffiffiffiffi
tw=r

p �
x; y; z streamwise, wall-normal, and

spanwise coordinates

d channel half-width or flume height

yþ dimensionless temperature

(temperature difference)

l thermal conductivity

n kinematic viscosity

r density

tw time-averaged wall shear stress

Subscripts and Superscripts

ð Þþ normalized by the wall variables,

ut; n; Tt

ð ÞB bulk velocity or temperature

ð ÞW value at the wall

h ix;y;z;t averaging along the directions

denoted in the subscripts

ð Þ0 fluctuating part of the variable

ð ÞN calculated with nonfluctuating

wall temperature boundary

condition

ð ÞF calculated with fluctuating wall

temperature boundary condition
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Sommer et al. (1994) [8] to investigate validity and extent of the zero fluctuating wall
temperature boundary condition ðK ¼ 0Þ for heat transfer modeling and calcula-
tions. They concluded that the zero and the nonzero fluctuating wall temperature
boundary conditions yield the same temperature distributions.

Although analytical derivations indicate the difference in the wall heat transfer
due to the different values of the thermal activity ratio K and different heating wall
thickness, the studies mentioned above [1–8] failed to identify the influence of the
fluid and the solid properties on the heat transfer coefficient and the mean tem-
perature field. Results of the studies [1–8] are, thus, in agreement with a simple
relation found in most of the heat transfer textbooks (i.e., Kays and Crawford [9]):

Nu ¼ fðRe; PrÞ ð1Þ

Direct numerical simulation is an important tool for investigating near-wall
turbulent heat transfer. In the past, results of the passive scalar field simulations in
channel flow were obtained by Kasagi et al. [10], Kim and Moin [11], Kawamura et
al. [12], Kasagi and Iida [13], and Na et al. [14]. Calculations presented in these
articles were carried out for infinite channel flow with a uniform wall heating [10, 12,
13], isothermal walls [14], and volumetric heating of the fluid [11], all used non-
fluctuating wall temperature boundary conditions. A similar DNS study of passive
scalar transfer in the flume geometry, where the flow was limited with a single
heating wall and a free surface, was performed by Tiselj et al. [15]. The study by
Tiselj et al. [15] defined the thermal boundary conditions that correspond to the two
limiting cases of conjugate turbulent heat transfer: the nonfluctuating wall tem-
perature case ðK ¼ 0; dh > 0Þ, and the fluctuating wall temperature case with K ¼ 1.
Although different behavior of the turbulent temperature fluctuations in the diffusive
sublayer was shown for both cases, the study [15] did not identify differences in the
mean temperature profiles and heat transfer coefficients.

It is important to mention that the nonfluctuating and fluctuating wall tem-
perature boundary conditions were denoted in [15] as “isothermal” and “isoflux
boundary condition for the dimensionless temperature yþ,” respectively. This ter-
minology is correct, but it was abandoned in the present work due to the possible
confusion with the conventional meaning of the “isothermal” and “isoflux”
boundary conditions, which were studied and compared, for example, by Kong et al.
[16], Teitel and Antonia [17], Churchill [18], and Morinishi et al. [19]. In these works,
the applied thermal boundary conditions were isothermal and isoflux boundary
conditions, where each of them could be further divided into the fluctuating and
nonfluctuating wall temperature boundary conditions. The nonfluctuating tem-
perature boundary conditions were applied in [10–14, 17, 19], and both types of wall
temperature fluctuations were applied in [15] and [16].

From the discussion above, it is clear that most methods used to solve the
conjugate heat transfer problem have been based on turbulence phenomenological
models or on DNS at low Reynolds numbers. In the present work, several direct
numerical simulations at various Reynolds and Prandtl numbers have been per-
formed with a modified version of the code used in [15]. Each DNS has been per-
formed with a single velocity field and with two passive scalar fields, each for a
different limiting type of thermal boundary condition at the fluid–solid boundary
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using the same Prandtl number and the same wall heat flux. With reduced statistical
uncertainty of this approach, we were able to demonstrate that the heat transfer rate
of fully developed turbulent channel flow also depends on the properties of a heating
wall:

Nu ¼ fðRe; Pr;K; dwÞ ð2Þ

As expected from the previous studies, which did not identify the influence of the
wall properties, the variations of a heat transfer coefficient due to thermal activity
ratio K and wall thickness dw were small, less than 1% for all tested Prandtl and
Reynolds numbers.

2. EQUATIONS AND BOUNDARY CONDITIONS

As the problem was well studied in the past, the governing equations of fully
developed turbulent flow in an infinite channel or a flume and the scaling procedure
can be found elsewhere [7, 9]. Temperature is assumed to be a passive scalar and does
not affect the flow field. The dimensionless form (in wall units) of the energy
equation in an infinite flume or a channel is given in a form that allows im-
plementation of the equation in the pseudo-spectral DNS code:

qyþ

qtþ
¼ �Hþ � uþyþ

� �
þ 1

Pr
Hþ2

yþ þ 1

Ret

uþ

uþB
ð3Þ

The streamwise, the wall-normal, and the spanwise direction in Eq. (3) are denoted
as xþ; yþ, and zþ; respectively. The dimensionless temperature yþ (also called
“dimensionless temperature difference”) is defined as

yþðx; y; z; tÞ ¼ TWALLh it;zðxÞ � Tðx; y; z; tÞ
Tt

ð4Þ

The averaging sign h�i with subscripts t and z means ensemble averaging over the
spanwise direction and time. The friction temperature is defined as Tt ¼ qw=rf cpf ut
and the friction Reynolds number as Ret ¼ utd=n, where qw is the time-averaged wall
heat flux, ut is the friction velocity, and d is the channel half-width or the flume
height ðd in wall units is dþ ¼ RetÞ. Term uþ=uþB appears in Eq. (3) due to the
transformation of the temperature T into the periodic variable yþ, where the bulk
streamwise velocity is defined as uþB ¼ uþh it;x;y;z.

It is important to note that, due to the prescribed wall heat flux qw, the aver-
aged wall temperature TWALLh it;z is increasing linearly in the streamwise direction x,
and the averaged dimensionless temperature yþ

� �
t;z

is not changing in the stream-
wise direction x.

Periodic boundary conditions are applied in the streamwise and the spanwise
directions. The free-surface in the flume geometry is assumed to be free-slip and
adiabatic. Definitions of the wall boundary conditions for the dimensionless
temperature yþ, which correspond to the two limiting cases of conjugate heat
transfer, are defined by Tiselj et al. [15] as follows:
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1. The nonfluctuating wall temperature boundary condition ðK ¼ 0 and

dw > 0Þ is defined in [15] as “the isothermal boundary condition for the
temperature yþ.” It sets the temperature at the wall–fluid plane to zero:

yþðx; y ¼ y
WALL

; z; tÞ ¼ 0 ð5Þ

This type of boundary condition was also used in previous DNS studies
[10–14, 17, 19]. Again, the expression “isothermal boundary condition for
the temperature yþ” should not be mixed with the standard definition of the
“isothermal boundary condition” used to denote the fixed temperature T on
a given boundary. In our case, the physical temperature T on the channel
wall is not constant, but is increasing linearly in the streamwise direction x.

2. The fluctuating wall temperature boundary condition ðK ¼ 1Þ is defined in
[15] as “the isoflux boundary condition for the temperature yþ.” In this case,
the dimensionless temperature yþ is split in an averaged part yþ

� �
t;x;z

ðyÞ;
which is constant, and a fluctuating part y0þ ðx; y; z; tÞ. The boundary
condition sets the averaged part at the wall to zero,

yþ
� �

t;x;z
ðy ¼ y

WALL
Þ ¼ 0 ð6Þ

whereas for the fluctuating part, the Neumann type of boundary condition
is prescribed:

dy0þ

dy
ðx; y ¼ y

WALL
; z; tÞ ¼ 0 ð7Þ

Both types of limiting thermal boundary conditions can be consistent with
isoflux or isothermal boundary conditions. Local wall heat flux is fluctuating for the
nonfluctuating temperature boundary condition, while the wall heat flux is constant
for the fluctuating wall temperature boundary condition. Numerical implementation
of the fluctuating wall temperature boundary condition for yþ in the pseudo-spectral
scheme that was used to perform the present DNS (Fourier series in streamwise and
spanwise directions, Chebyshev polynomials in wall-normal direction) is fairly
straightforward: the mean values of the temperatures at planes yþ¼ const are given
by the first terms of the corresponding Fourier expansions. Thus, Eq. (6) is used as a
boundary condition for the differential equation for the mean part of the tem-
perature field solved in the wall-normal direction, and Eq. (7) is used as a boun-
dary condition for the higher wave numbers of the Fourier series. Details of
the implementation of the fluctuating wall temperature boundary condition are
given in [15].

3. HEAT TRANSFER RATE FOR THE FLUCTUATING AND NONFLUCTUATING
WALL TEMPERATURE BOUNDARY CONDITIONS—THEORY

Despite the fact that none of the previous studies [5–8, 15] dealing with both
types of the thermal boundary conditions revealed a difference in the heat transfer
rate, it is possible to analytically prove the existence of different temperature profiles
for the nonfluctuating and the fluctuating wall temperature boundary condition. For
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fully developed channel or flume flow, the energy equation (3) is averaged in time
from t ¼ 0 to 1, and in space from x and z ¼ �1 to 1. Further integration from
y� ¼ 0 to yþ (see also Kasagi et al. [10] or Kawamura et al. [12]) gives the following
expression:

0 ¼ � n0þy0þ
� �

t;x;z
ðyþÞ þ 1

Pr

d yþ
� �

t;x;z

dyþ
ðyþÞ � 1þ 1

Retu
þ
B

Z yþ

0

uþh it;x;zðy�Þdy� ð8Þ

Equation (8) shows that the mean temperature profile can be calculated if the mean
velocity profile uþh it;x;z and the wall-normal turbulent heat flux profile v0þy0þ

� �
t;x;z

are known. It is known (Kawamura et al. [12]) that in the vicinity of the wall, the
wall-normal turbulent heat flux for the nonfluctuating wall temperature boundary
condition can be expanded in terms of yþ as

n0þy0þ
� �

t;x;z
ðyþÞN ¼ a1y

þ3

a2y
þ4 þ . . . ð9Þ

From the asymptotic behavior of n0 þ and y0þ, a similar expansion can also be
obtained for the fluctuating wall temperature boundary condition for yþ (see Kong
et al. [16]):

n0þy0þ
� �

t;x;z
ðyþÞF ¼ b1y

þ2 þ b2y
þ3 þ . . . ð10Þ

As the near-wall behavior of the wall-normal turbulent heat flux depends on the
thermal boundary condition, it is clear from Eq. (8) that the mean temperature
profiles and the heat transfer coefficients also depend on the type of the thermal
boundary condition. While the analytical calculation can prove the existence of the
difference, it cannot give the magnitude of the differences, as the coefficients of the
expansion terms in Eqs. (9) and (10) cannot be determined analytically. Moreover,
the leading terms of the series in Eqs. (9) and (10) are not sufficient for accurate
prediction of the difference in the temperature profiles for both types of boundary
conditions.

4. HEAT TRANSFER RATE FOR THE FLUCTUATING AND NONFLUCTUATING
WALL TEMPERATURE BOUNDARY CONDITIONS-DNS

The goal of the present study is to estimate the differences between the tem-
perature profiles calculated with the nonfluctuating and fluctuating wall temperature
thermal boundary conditions, which have not been reported yet. Table 1 contains the
main results of the 12 various DNSs performed for different Reynolds and Prandtl
number flows in the flume and the channel geometry. Test cases 1–6 were performed
for the flume geometry, and test cases 7–12 for the channel geometry. They are
denoted by F or C in the first column. The influence of the thermal boundary
condition is limited to a conductive sublayer, whereas the differences between the
channel and the flume geometry are limited to the zone near the center of the channel
or the top of the flume. Some slight difference between the channel and the flume
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DNS can be seen in the mean temperature profiles shown later in Figures 1c and 1d
by comparing cases 6 and 7 in Table 1. These simulations were performed at the
same Reynolds number Ret and at the same Prandtl number Pr, but for the different
geometries. As can be seen in Figures 1c, 1d, and 2b, the near-wall behavior is not
affected by differences in geometry.

Sizes of the computational domains (column 4 in Table 1), grid densities
(column 5), time steps (column 6), and averaging times (column 7) are comparable
with other similar DNS studies of Kasagi et al. [10], Kim and Moin [11], Kawamura
et al. [12], and Na et al. [14], performed at similar Reynolds and Prandtl numbers.

In the previous DNS study of Tiselj et al. [15], the difference in the mean
temperature profiles obtained with the two limiting types of fluid–solid thermal
boundary conditions was attributed to statistical uncertainty. The results for each
type of the boundary condition were obtained with separate code runs, which pro-
duced a slightly different velocity field. Statistical uncertainty of the velocity field is
seen from the calculated values of the friction velocity ut in column 8 Table 1
[tabulated values are actually 100�ðut � 1Þ] and the bulk velocity uþB in column 9. Up
to 0.7% variations of the calculated friction velocity from the expected value ut ¼ 1
are seen. The calculated friction velocity ut also gives the actual friction Reynolds
number achieved in the simulation, which is compared to the friction Reynolds
number Ret used in the equations (column 3 in Table 1): RetðCALCÞ ¼ Retut.

To reduce the sensitivity due to the statistical uncertainty, a modified computer
code has been used in the present work. It allows simulations of multiple tempera-
ture fields with a single velocity field. This feature of the improved code eliminates
the statistical uncertainty of the velocity term in Eq. (8) (last term on the right-hand
side) and enables calculation of differences in the mean temperature profiles at the
two limiting thermal boundary conditions, which remained hidden in the previous
work of Tiselj et al.[15]. In the present work, DNS simulations with the fluctuating
and nonfluctuating wall temperature boundary conditions were performed at friction
Reynolds numbers Ret ¼ 150, 170.8, and 424 (see Table 1). All DNS tests sum-
marized in Table 1 were obtained with simultaneous DNS of a single velocity field
and two thermal fields: one with the nonfluctuating and the other with the fluctu-
ating wall temperature boundary condition. Four different Prandtl numbers were
considered in this study: Pr¼ 5.4 (test cases 1–3), Pr¼ 1.0 (test cases 4–7), Pr¼ 0.71
(test cases 8–11), and Pr¼ 0.025 (test case 12).

While the statistical uncertainty of the velocity field has been eliminated for
calculation of the heat transfer at various thermal boundary conditions, the statis-
tical uncertainty of both temperature fields cannot be eliminated. Column 10 in
Table 1 contains values of the calculated friction temperature Tt ¼ qw=rf cpf ut for
the nonfluctuating wall temperature boundary condition [the tabulated quantity is
actually 100�ðTt � 1Þ]. Compared to the expected value of Tt ¼ 1, statistical varia-
tions of up to 0.5% can be observed. Slightly different values of Tt are obtained for
the fluctuating wall temperature boundary condition. However, instead of these
values, the relative difference of the friction temperatures Tt calculated for the both
types of boundary conditions is given in the column 11:

DTtð%Þ ¼ 100 � 1� Ttð ÞF
Ttð ÞN

� 	
ð11Þ
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As the friction temperature is proportional to the wall heat flux Tt ¼ qw=rf cpf ut, the
difference in Eq. (11) also means the difference of the wall heat flux for the both types
of thermal boundary conditions, which directly affects the heat transfer coefficient. It
can be seen in column 11 of Table 1 that relative differences of the friction

Figure 1. Grey lines, left scale: two mean temperature profiles calculated with fluctuating and non-

fluctuating wall temperature boundary conditions are too close to be resolved in graphs 1a, 1b, 1c, and 1f,

while a small difference is visible in graphs 1c and 1e. Black lines, right scale: difference between the mean

temperatures profiles calculated with nonfluctuating and fluctuating wall temperature boundary

conditions. (a) Ret¼ 170.8, Pr¼ 5.4 (cases 1, 2); (b) Ret¼ 424, Pr¼ 5.4 (case 3); (c) Pr¼ 1.0 (cases 4–6),

flume geometry; (d ) Pr¼ 1.0 (case 7), channel geometry; (e) Pr¼ 0.71 (cases 8–11); ( f ) Pr¼ 0.025

(case 12).
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temperatures (and the heat fluxes) can be positive or negative, with absolute values
smaller than 0.1%.

Column 12 in Table 1 gives the bulk temperatures in the channel or the flume
calculated with the nonfluctuating wall temperature boundary condition for the
dimensionless temperature yþ:

yþB ¼
uyh ix;y;z;t
uþB

Column 13 shows the relative difference of the bulk temperatures calculated with the
nonfluctuating and fluctuating wall temperature boundary condition for the di-
mensionless temperature yþ:

DyþB ð%Þ ¼ 100 �
1� yþB

� �
F

yþB
� �

N

" #
ð13Þ

In all 12 simulations, the bulk temperature calculated with the nonfluctuating wall
temperature boundary condition appears to be higher than the bulk temperature
calculated with the fluctuating wall temperature boundary condition for the di-
mensionless temperature yþ. Differences are between 0.3% and 1.0% and are sig-
nificantly higher than the statistical uncertainties of the wall heat fluxes (and friction
temperatures) in column 11 of Table 1.

Column 14 of Table 1 contains Nusselt numbers obtained from the numerical
simulations performed,

Nu ¼ 2d
l

qw
yW � yB

¼ 2
ðdy=dyÞW

yB
ð14Þ

column 15 shows the relative difference of the Nusselt numbers calculated with the
nonfluctuating and fluctuating wall temperature boundary condition,

DNuð%Þ ¼ 100� 1�NuF
NuN

� �
ð15Þ

The numerical simulations performed show that heat transfer near the heating flat
wall is between 0.3% and 1.0% more efficient when the fluctuating wall temperature
boundary condition is imposed at the wall–fluid interface than in the case of the
nonfluctuating wall temperature boundary condition for dimensionless temperature
yþ. As these differences are of the same order of magnitude as the statistical un-
certainty of the previous study [15], it is clear why they have remained unnoticed.

Figure 1 presents mean temperature (yþ) profiles at various Prandtl numbers
(gray curves upper left in each figure, with corresponding temperature scale on the
left). Only two temperature profiles are given in Figures 1a (case 1), 1c (case 6), and
1e (case 11), as the profiles of the other simulations are too close to be resolved on
these figures. The very small differences between the temperature profiles calculated
with fluctuating and nonfluctuating wall temperature boundary conditions are barely
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visible in temperature profiles in Figure 1. A better view of the difference in the
mean temperature profiles is given by the black lines in Figure 1 (right scale), where
the mean temperature profile calculated with the fluctuating wall temperature
boundary condition is subtracted from the mean temperature profile calculated with
the nonfluctuating wall temperature boundary condition. It is clearly visible that
the difference is accumulated in the near-wall diffusive layer and remains constant
as the distance from the wall increases. Temperature differences in Figures 1 also give
an impression of the statistical uncertainty. That is, the lowest statistical uncertainty
is seen in Figure 1e at Pr¼ 0.71, where the largest computational domain and the
longest averaging times were applied.

Figure 2 shows the wall-normal turbulent heat fluxes for each type of boundary
condition. The differences are accumulated only in the conductive sublayer. The
limiting near-wall behavior of the wall-normal heat fluxes is in agreement with the
theoretical predictions of Eqs. (9) and (10) for the nonfluctuating and fluctuating
wall temperature boundary condition for yþ, respectively.

Test case 3 was performed at a higher friction Reynolds number, Ret¼ 424.
Kawamura et al. [12] reported relatively weak influence of the Reynolds number on
the near-wall behavior of the turbulent heat transfer statistics (mean temperature,
root mean-square fluctuations, and turbulent heat fluxes) in a turbulent channel.
However, their study was limited to the nonfluctuating wall temperature boundary
condition for yþ. The results of test case 3 show that conclusions of Kawamura et al.
[12] also remain valid for the fluctuating wall temperature boundary condition.

Figure 2. Mean wall-normal heat flux profiles at different Prandtl numbers, influence of the thermal

boundary condition for temperature y. Solid lines: fluctuating wall temperature boundary condition.

Dashed lines: nonfluctuating wall temperature boundary condition. (a) Pr¼ 5.4 (cases 1–3); (b) Pr¼ 1.0

(cases 4–7); (c) Pr¼ 0.71 (cases 8–11); (d ) Pr¼ 0.025 (case 12). Straight lines denote theoretical limiting

behavior near the wall.
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A very weak influence of the Reynolds number is seen in Table 1, which is of the
same order as the statistical uncertainty and does not allow the conclusion that the
difference in the Nusselt numbers depends on the Reynolds number.

Simulation 12 in Table 1 at Pr¼ 0.025 was performed for the relatively thick dif-
fusive sublayer at very low Prandtl number. However, despite a wider diffusive sublayer,
where the difference between the temperatures evaluated by the nonfluctuating and
fluctuating wall temperature boundary conditions is generated, the difference between
the corresponding Nusselt numbers remains the same as at higher Prandtl numbers.

The results of the DNS studies in Table 1 show that heat transfer rate depends
on the properties of the heater. Nusselt number is slightly higher for fluid heated with
the wall that allows the temperature fluctuations to propagate into the solid wall
than for fluid heated with the wall that does not allow temperature fluctuations. The
statistical uncertainty of the present results allows us to identify these differences, but
it does not enable us to analyze these differences as a function of Reynolds and
Prandtl numbers. Anyway, we assume that the same difference will also appear at
larger Prandtl numbers [20].

Experimental confirmation of the results obtained in the present article is
hardly possible with existing experimental setups, as the measurement errors of the
fluid velocity, fluid temperature, and especially the heating power should be reduced
below 1%. Although practical application of the results in the present work is not
foreseen, it remains a remarkable feature that the material properties of the heated
fluid boundaries actually affect the turbulent flow.

5. CONCLUSIONS

It is possible to show analytically the existence of the difference in heat transfer
rates between the nonfluctuating and fluctuating wall temperature boundary con-
ditions, which are applicable as the limiting types of the conjugate heat transfer
boundary conditions in the fully developed turbulent flow near a heated wall.
However, the magnitude of the difference cannot be calculated analytically. The
present DNS results show up to 1% higher heat transfer rate for the fluid–solid
combination with the thermal activity ratio K ¼ 1 (denoted in the present work also
as the fluctuating wall temperature boundary condition) than for the other limiting
case with thermal activity ratio K ¼ 0 and finite heating wall thickness (denoted in
the present work as the nonfluctuating wall temperature boundary condition). Al-
though the results of this study are limited to the low friction Reynolds numbers
Ret¼ 150, 170.8, 424, and Prandtl numbers Pr¼ 0.025, 0.71, 1.0, 5.4, we assume
that the same small differences in heat transfer, generated in the diffusive sublayer of
the near-wall turbulent flow, also appear at other Reynolds and Prandtl numbers.
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