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Abstract 
 
This paper describes the numerical scheme used in the WAHA code that was developed 
within the WAHALoads project for simulations of fast transients in 1D piping systems. Two-
fluid model equations are solved with an operator splitting procedure. A second-order 
accurate non-conservative characteristic upwind scheme is used to solve the hyperbolic part 
of the equations with the non-relaxation source terms, while the relaxation source terms are 
treated in the second step of the operator splitting procedure. The water-vapour properties are 
calculated with a newly developed set of subroutines that use pre-tabulated water properties. 
Special models that were developed for the treatment of the abrupt area-changes and branches 
in the piping systems are described. Various test cases, which were used to test the accuracy 
of the basic numerical scheme and the accompanying numerical models, are described 
together with typical results of the simulations. 
 
 
1. Introduction  
 
Among the eleven contractors of the WAHALoads project, three of them (UCL - Catholic 
University of Louvain, CEA-Grenoble and "Jozef Stefan" Institute) were developing a 
computer code named WAHA (Tiselj et. al. 2004)  for prediction of 1D two-phase flows 
during water hammer events and shock wave propagation in pipes and open networks. The 
primary objective of this code is an accurate prediction of hydrodynamic loads on pipes 
during the fast transients. The physical models and the results of several fast transient 
simulations are given in the paper by Gale et. al. (2006), while the present paper describes the 
numerical scheme used in the WAHA code together with the cases that were used to test 
accuracy and robustness of the applied numerical methods.  Larger number of works has been 
published in the past few years in the field of the numerical solutions of the hyperbolic two-
fluid models for two-phase flows (e.g. Toumi and Kumbaro, 1996, Bereux, 1996, Burman and 
Sainsaulieu, 1995, Gallouet and Massela, 1996, Karni, 1996, Tiselj and Petelin, 1997, Saurel 
and Abgrall, 1999, Faucher et al., 2000, Ghidaglia et al., 2001, Guinot, 2001, Evje and Fjelde, 
2002, Paillere et. al. 2003, Evje and Flatten, 2003). Most of these works are based on the 
evaluation of the characteristic velocities in the two-fluid models. They represent an extension 
of the numerical schemes used in aerodynamics to the field of two-fluid models of two-phase 
flows. In comparison to the so-called donor-based numerical schemes used in the system codes 
for the thermal-hydraulic analyses of the piping systems in nuclear power plants (RELAP - 
Carlson et.al., 1990, CATHARE - Bestion, 1990, TRAC - Spore et al., 1981), the characteristic-
upwind schemes offer better control of the numerical uncertainties and the second-order 
accuracy of solutions. In general, the advantages of the characteristic-upwind schemes are not 
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solely sufficient to initiate the upgrade of the system codes with the improved numerical 
schemes. Namely, the main source of the inaccuracy in the system codes does not stem from the 
numerical scheme but rather from the incorporated physical models. Nevertheless, we estimated 
the advantages of the characteristic-upwind schemes as sufficient to justify their application in 
the new codes. Thus, the WAHA code was built on the characteristic-upwind numerical 
scheme.   
 
While most of the research in the field of the characteristic-upwind schemes for the two-fluid 
models was focused on the solution of the hyperbolic part of the two-fluid model, only a small 
part of attention was focused on the source terms. In the computer code like WAHA, which 
attempts to cover rather wide spectra of the transients in the piping systems, integration of the 
source terms turned out to be a more difficult part of the task. Non-relaxation source terms 
describing exchange of mass, momentum and energy between the fluid and the environment are 
integrated with the same characteristic upwind numerical scheme as convective terms. 
Relaxation source terms describing internal exchange between the liquid and the gas phase are 
often stiff (Pember, 1993). They are integrated in a separate sub-step of the operator splitting 
method without upwinding. 
 
The section 2 of the present paper describes the operator splitting approach used in WAHA 
code. The section 3 reviews the non-conservative characteristic-upwind numerical scheme used 
to integrate the convective part of the equations together with the non-relaxation source terms. 
Various examples are added to demonstrate the accuracy of the solutions. The integration of the 
relaxation source terms is the second sub-step of the operator splitting procedure and is 
described in the section 4. The section 5 reviews the models of the single-to-two-phase and the 
two-phase-to-single-phase flow transition, the section 6 describes calculation of the water-
vapour properties, and the section 7 presents special models used in WAHA code to describe an 
abrupt area change and a branch in the piping systems. The last section  lists the main 
conclusions and possible further modifications of the numerical procedures.    
 
2. Operator splitting 
 
The system of WAHA equations can be written in the following form:  

   ,S  =  
x

    +  
t

 
rrr

∂
∂

∂
∂ ψψ

BA          (1) 

where ψr  represents the vector of independent variables )u ,u  v,v , p, (  =  gfgf ,αψr , A  and B  are 

matrices of the system, and S
r

 is a vector with non-differential terms in the equations. The 
derivation of matrices A  and B  and vector S

r
can be found in the WAHA code manual (Tiselj 

et. al., 2004) and in Gale et al. (2006). The numerical scheme of the WAHA code is based on 
non-conservative variables. Reasons that led to the choice of the non-conservative variables 
and consequences of such approach are analyzed later in the present paper.  
    
The source term vector S

r
 in Equation (1) is further split into two parts:  

RRN SSS
rrr

+= − .          (2) 

The first part of the source term are "non-relaxation" sources RNS −

r
, which contain wall friction, 

volumetric forces (gravity) and sources due to a variable pipe cross-section. The non-
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relaxation source terms are closely related with convection terms and are treated together with 
the convection terms in the WAHA code using the method of Glaister (1985). 
 
The second part of the source term contains relaxation sources RS

r
, which tend to establish 

thermal and mechanical equilibrium between both phases, i.e., they are responsible for the 
inter-phase heat, mass, and momentum transfer. The relaxation sources are often stiff, i.e. 
their characteristic times are much shorter than the characteristic times of other phenomena in 
two-phase flow, even shorter than the characteristic times of the acoustic waves.  
 
Stiffness of the relaxation sources is the reason for the use of the operator splitting in the 
numerical scheme of the WAHA code. Splitting means that the convection terms with the 
non-relaxation sources RNS −

r
 in Equation (1) are treated separately from the relaxation sources 

RS
r

. A single time step includes the following two sub-steps (superscripts 1+n  ,n  denote time 
levels,  * denotes intermediate time level and subscript j denotes spatial position): 
1) The convection terms and the non-relaxation sources: 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ψ∂+Δψψ −

− x
  S t-  =  

n

RN
1-

j

n
j

*
j

rrrr
BAA

1 .      (3) 

2) Intermediate values in the vector   *
jψr are initial conditions for integration of the relaxation 

sources: 

( ) ( )dtS   +    =  jRj
1-

t+t

t
j

n
j ψψψψ ∫

Δ
+ rrrrr ***1

*

*

A .       (4) 

The operator splitting given by Eqs. (3) and (4) is formally first-order accurate. However, the 
numerical tests have shown, that despite the formally lower order of accuracy, the results are 
practically the same as with the second-order accurate Strang splitting (LeVeque, 1992), 
which was coded in one of the earlier versions of the code. A detailed scheme for each sub-
step of the operator splitting is given in the next sub-sections. 
 
The operator splitting as shown in Eqs. (3)-(4) is a very simple and "easy-to-use" tool. 
However, it is also a source of a specific non-accuracy, which was discussed by Burman and 
Sainsaulieu (1995), Bereux (1996), and Tiselj and Horvat (2002). The papers of Burman and 
Sainsaulieu (1995), and Bereux (1996) are from the area of particle-gas two-phase flow 
during rocket fuel combustion. They discuss a problem of solving a system of hyperbolic 
equations of the same form as Eq. (1) written as: 

ε
ϕϕϕϕ *−=

∂
∂+

∂
∂

x
C

t
          (5) 

where superscript * denotes the equilibrium (thermal or mechanical) value and ε  denotes the 
characteristic time of relaxation. The relaxation time is a time period in which the relaxation 
quantity ϕ  approaches to its equilibrium value *ϕ . Numerical solution of the Eq. (5), 
obtained with operator splitting method, converges toward the solution of the differential 
Equation (5) as 0,0 →Δ→Δ tx  and when the condition εΔt  is fulfilled. The last condition is 
often not respected in the two-fluid codes. It is clear that the problems appear for small values 
of the relaxation time ε .  
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Up to four types of non-equilibrium (relaxation variables) can be present in the two-phase 
water system; each of them has different characteristic relaxation time: 
 

1) Different phasic pressures: exact relaxation times unknown - known to be very short. 
2) Vapor temperature not in saturation - relaxation times short in most of the flow 

regimes, but not always negligible. 
3) Liquid temperature not in equilibrium  - relaxation time not negligible. 
4) Mechanical non-equilibrium: different phase velocities - relaxation time not negligible. 

 
The six-equation model of the WAHA code describes the non-equilibrium no. 2, 3 and 4. The 
five-equation model would be sufficient to describe the non-equilibrium no. 3 and 4, the 
seven-equation model of Saurel and Abgrall (1999) can describe all four types of non-
equilibrium, whereas the simplest three-equation homogeneous-equilibrium model (HEM) 
cannot describe any kind of non-equilibrium. From the physical point of view, more equations 
describe the system more accurately. However, each type of non-equilibrium combined with 
the operator splitting method causes numerical error, which behaves like numerical diffusion 
when the relaxation time is very short. This is demonstrated in the two-phase shock tube 
problem presented in the section 4 of the present paper.   
 
Because of the numerical non-accuracy of the operator splitting method, it is better to use 
two-fluid model with less equations for very short relaxation times. If all relaxation times are 
very short, the three-equation HEM model is the optimal approach. On the other hand, 
relaxation times must be estimated from the existing physical models for different types of 
non-equilibrium. Short and long relaxation times for the non-equilibrium types no. 2, 3, and 4 
are encountered in two-phase flows of water. Therefore, it was decided to use six-equation 
two-fluid model in the WAHA code. 
 
User of the WAHA code should be aware of the deficiency of the applied operator splitting 
method, which is seen as an additional numerical diffusion when very short relaxation times 
appear in the equations. With a special transformation of the equations and with appropriate 
numerical schemes described by Burman and Sainsaulieu (1995), and Bereux (1996), this 
deficiency of the operator splitting method can be avoided. However, due to their complexity, 
and due to the fact that the performance of these models would be questionable for non-stiff 
relaxation terms, these approaches are not applied in the WAHA code. 
 
3. Discretisation of the convective terms with the non-relaxation source terms 
 
Equation (1) multiplied by 1−A  from the left gives 

 S  =  
x

  +  
t RN −

− ⋅
∂
ψ∂

∂
ψ∂ rrr

1AC ,         (6) 

where BAC 1− =  is the Jacobian matrix, which can be diagonalised as 

  1−⋅⋅= LΛLC .           (7) 

The diagonal matrix Λ  is the matrix of eigenvalues and L is the matrix of eigenvectors of the 
matrix C.  Eigenvalues, eigenvectors, and inverse matrix of eigenvectors are explicitly 
calculated between the grid points in the WAHA code. In order to use the numerical scheme 
described in this report, the system of equations (6) must be hyperbolic. This is not always the 
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case for six-equation two-fluid models. However, as mentioned in the paper by Gale et. al 
(2006), the hyperbolicity of the WAHA code equations is ensured with appropriate form of 
the additional differential terms for virtual mass and/or interfacial pressure. The calculation in 
the WAHA code is interrupted if complex eigenvalues are found and the equations become non-
hyperbolic. However, such cases were never recorded in simulations of the physical 
phenomena. 
 
Diagonalization of the Jacobian matrix (7) is performed numerically for the reduced matrix C of 
dimension 4x4, while the remaining two eigenvalues and eigenvectors are calculated 
analytically. The approximate analytical approach in computation of the eigenvalues was 
avoided in order to make the code more general and to allow easier introduction of the 
correlations that might contain derivatives, which would modify the eigen-structure of the 
equations. A specific problem of the six-equation two-fluid models of two-phase flow is 
degeneration of a pair of eigenvectors when relative inter-phase velocity is zero. In this case 
only five linearly independent eigenvectors exist. The problem remains solvable, if a small 
artificial relative velocity is maintained; the value m/s10|=v| -

r
7  is used in the WAHA code. 

 
The non-relaxation source term RNS −

−
r

1A  in Eq. (6) is written in two parts as  

FARN R
dx

xdA
RS

rrr
−−=−

− )(1A .         (8) 

The first part with the vector AR
r

 contains source terms due to the variable pipe cross-section 

with derivatives of the pipe cross-section, and the second part FR
r

 contains wall friction and 
volumetric forces withno derivatives. Using Eqs. (7) and (8),  Eq. (6) is written as: 

.  R 
x

A
R    

x
  +  

t FA 01 =+
∂
∂+

∂
∂⋅⋅

∂
∂ −

rrrr ψψ
LΛL         (9) 

The total derivative of cross-section A can be replaced with a partial derivative, as A is only a 
function of x. This equation is multiplied by L-1 from the left and modified with 

identities IΛΛ =⋅ −1  and  
x

x
1=

∂
∂  to: 

.  
x

x
R 

x

A
R    

x
  +  

t FA 0111111 =
∂
∂⋅⋅+

∂
∂⋅⋅+

∂
∂⋅

∂
∂ −−−−−−

rrrr

LΛΛLΛΛLΛL
ψψ      (10) 

Modified characteristic variables (Glaister, 1985) are then introduced in Eq. (10) as  

xR  A R      FA δ⋅+δ⋅+ψδ=δξ −−−−−
rrr 111 LΛLΛL 11  ,      (11) 

where ξδ
r

 represents an arbitrary variation e.g. t/∂∂ξ
r

 or x/∂∂ξ
r

. Note that the variables A and x 
are not functions of time; cross-section variations due to the pipe elasticity are expressed with 
pressure variations. Introduction of modified characteristic variables (11) gives the 
characteristic-like form of Eq. (6): 

.  0  =  
x

   +  
t ∂

∂
∂
∂ ξξ

rr

Λ           (12) 
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This equation represents the basis for the second-order accurate numerical scheme in the 
WAHA code. The discretisation of Eq. (12) was performed using the second-order accurate 
characteristic upwind discretisation (Hirsch, 1988): 

 0  =  
x

  -  
  )(  +  

x

  -  
  )(  +  

t

 - 
n

j

n

1j+n
1/2j+

--

n

-1j

n

jn
-1/2j

++

n

j

1+n

j

ΔΔΔ

ξξξξξξ
rrrrrr

ΛΛ ,     (13) 

where subscripts 1, ±jj  denote grid points of the spatial discretisation, subscripts 2/1±j  
denote values between the grid points, xΔ denotes distance between the two neighbouring grid 
points j and j+1, superscripts n, n+1 denote time, and tΔ  time step i.e. an interval between time 
levels n and n+1. Elements of the diagonal matrices −−++ ΛΛ   ,   in Eq. (13) are calculated as: 

−−−−

++++

⋅=

⋅=

kkk

kkk

f

f
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⎠
⎞
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  (14) 

The first term of the factors  fk
++  and   fk

−− is the first-order upwind discretisation, and the 
second term with limiters kφ  is the second-order correction. The flux limiter φ k  can be chosen  

by the code user from the MINMOD, the Van Leer, or the Superbee limiter (LeVeque, 1992). 
The non-standard definition of the characteristic variables in Eq. (11) requires multiplication 
with the inverse matrix of the eigenvalues 1−Λ . Computation of this matrix is not possible when 
any of the eigenvalues is equal to zero. To avoid this problem, the WAHA code calculates 
limiters φ k  from the following variables (see also Glaister, 1985):  

xRAR FA δδψδξδζδ
rrrrr

111 −−− ++⋅=⋅= LLLΛΛ .      (15)  

These new variables are then used to measure the ratio of the gradients in the flux limiters: 

 1,=k   ,
||

=m   ,
-

-
 = 

1/2+jk,

1/2+jk,

1+jk,

m-1+jk,

jk,1+jk,

m-jk,m1-+jk,
1/2+jk, 6

2/

2/

λ
λ

ζ
ζ

ζζ
ζζ

θ
Δ

Δ
= .    (16)  

The stability domain for the integration with the described scheme is limited by the Courant-
Friedrichs-Levy (CFL) condition: 

. 1,=k   ,|)k(|x/t 6max λΔ≤Δ         (17) 

3.1 Evaluation of the Jacobian matrix 
A simple average of the non-conservative variables is used for evaluation of the Jacobian matrix 
in Eq. (6) at the point 1/2+j : 

)/2]+[( =  1+jj1/2+j ψψ rr
CC .         (18) 

A similar approach was taken by Gallouet and Masella (1996), who showed that this type of 
averaging gives very accurate results for Euler equations. They emphasized that the averaging 
(18) must be performed with primitive variables (pressures, velocities and densities). Another 
more complicated and possibly more accurate alternative was proposed by Toumi and Kumbaro 
(1996), which is not adopted in the present work. In attempt to evaluate the Roe's approximate 
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Riemann solver (Roe, 1981) for the six-equation Jacobian matrix C 1/2+j , they proposed a rather 

complicated procedure for evaluation of the Jacobian matrix between the grid points j  and 
1+j .  

 
In the present numerical scheme, the same averaged variable 

)/2+( = 1+jjj ψψψ rrr
2/1+ ,          (19) 

is used to evaluate the non-relaxation source terms in the point 1/2+j . Furthermore, the same 
type of averaging is used to evaluate the geometrical properties of the pipe (pipe cross-section 
and pipe inclination) at the point 1/2+j . 
 
3.2 Why non-conservative approach? 
Numerous tests were performed with the six-equation model (described by Tiselj and Petelin, 
1997) with different basic variables and the most successful set of variables turned out to be 

)u ,u  v,v , p, (  =  gfgf ,αψr . This set of variables is very close to the so-called primitive variables, 

where the phase internal energies gf u ,u   are replaced with the phase densities ρρ gf  , . However, 

internal energies were retained due to the applied water property subroutines. The preferred set 
of variables would be a conservative form: 

],[ e  ,e )-(1 v  ,v )-(1 ,  ,)-(1 ggffggffgf ραραραραραραϕ =
r

,    (20) 

with specific total energy 2/2vue += . The conservative form of equations usually brings 
numerical conservation of mass, momentum and energy. However, there are some specific 
problems with the conservative formulation of multi-fluid two-phase flows: 
 

1) The continuity and energy equations can be written in the conservative form, while the 
conservative fluxes for the momentum equations do not exist due to the pressure gradient 
terms, virtual mass terms, interfacial pressure terms, and possibly other correlations that 
contain derivatives. Thus, the momentum equations cannot be written in the conservative 
form.  

2) If complex systems of equations are solved with the conservative variables (Tiselj and 
Petelin, 1997), oscillations appear in the vicinity of particular discontinuities. Abgrall 
(1996) explained such oscillations for the four-equation model (two continuity, one 
momentum and one energy equation). The oscillations do not depend on accuracy of the 
used numerical scheme and can be observed in the results of first- and the second-order 
schemes. 

3) "Non-standard" water-vapour properties subroutines are required to calculate two-phase 
properties ( ρρα gf   ,, ,p ) from the conservative variables 

( u  ,u )-(1  ,  ,)-(1 ggffgf ραραραρα ). 

According to our experiences, the non-conservative variables present an acceptable 
approximation for fast transients. For long transients, where conservation of mass and energy is 
more important; this might be a serious drawback. In the test calculations presented by Tiselj 
and Petelin (1997, 1998) negligible fluctuations of the overall mass and energy (less than 2%) 
have been observed despite the non-conservative scheme. Some additional tests related to the 
behavior of the WAHA numerical scheme for the convective part of the equations with non-
relaxation source terms are presented further in the text. 
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3.3 Test cases for the convective part of the equations 
 
Ideal gas shock tube (Sod's problem) is the model of the Riemann problem model with pure 
single-phase gas. In order to estimate the errors due to the non-conservative numerical 
scheme, the calculations were performed with the WAHA code as well as with the 
conservative high-resolution shock-capturing scheme with the Roe's approximate Riemann 
solver. The modelled pipe has constant diameter and length of 10 meters. The wall friction, 
the inter-phase friction and the heat and mass transfer correlations are excluded from the 
calculation. The experiment starts at time t = 0.0 s, when the membrane that separates two 
different states in the pipe ruptures. The initial thermo-dynamical state is defined with three 
parameters: pressure, temperature and velocity. Left and right side initial conditions are taken 
from the Sod's work (1978): pL=105  Pa, ρ L=1 kg/m3, vL=0 m/s, pR=104 Pa, ρ R=0.125 kg/m3, 
vR=0 m/s. 
 
Comparison with conservative scheme at time t = 0.0061 s is shown in Fig. 1. The solution 
obtained with conservative variables is practically equal to the analytical solutions, which are 
therefore not shown in Fig. 1. Non-conservative schemes are known to converge to a wrong 
solution when shocks are present in the flow field. However, in typical single-phase water 
hammer transients, the solution obtained with a non-conservative scheme is very close to the 
exact solution of the transport equations.. According to the results shown in Fig. 1, the non-
conservative scheme does not seem to represent a big deficiency for most of the transients 
with shock waves in the gas phase, as long as the maximum to minimum pressure ratio is 
lower than approximately 10. 
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Figure 1: Pressure, velocity and density profiles, comparison of the WAHA code scheme and 

the conservative scheme results at time t = 0.0061 s. 

 
Liquid shock tube is modelled in a pipe of constant diameter, length of 10 meters and closed 
ends on both sides. The wall friction, the inter-phase friction and the heat and mass transfer 
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correlations are excluded from the calculation. Beside calculations with the WAHA code, 
calculations with the conservative scheme were also performed. This comparison is an another 
test of (non)conservative properties of the WAHA code scheme. 
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Figure 2: Pressure and velocity profiles calculated with the WAHA code scheme and the 
conservative scheme results at time t = 0.00285s. 

The experiment starts at time t = 0.0 s when the membrane that separates two different states in 
the pipe ruptures. The initial thermo-dynamical state is defined with three parameters: pressure, 
temperature and velocity. At the beginning, a single discontinuity in form of a pressure drop 
from 100 to 1 bar is present in the pipe at 5 meters. The initial velocity is set to zero and the 
initial temperature is set to 300 K. Comparison with the conservative scheme at time t = 0.00285 
s is shown in Fig. 2. There is practically no difference between the non-conservative WAHA 
code scheme and the results of the test code with the conservative variables, despite the very 
strong initial pressure discontinuity. Relative mass and internal energy non-conservation is less 
than 10-7. Thus, the influence of the non-conservation approach is negligible in the case of 
single-phase liquid shock waves for all practical pressure drops. 
 
Critical flow of ideal gas in convergent-divergent nozzle is modelled in a pipe of variable 
cross-section with length of 3.226 meters (convergent-divergent part is 3 m long) and constant 
pressure on both sides. The case is used to test the performance of the WAHA code numerical 
scheme in the variable cross-section geometry, i.e. to test of the non-relaxation source terms 
responsible for the cross-section variations. Geometry and boundary conditions are taken 
from the book of Anderson (1995). The nozzle has equal inlet and outlet cross-sections with 
the minimum cross-section 6 times smaller than the inlet cross-section. Boundary conditions 
are defined with constant pressure. Pressure on the left side is pL= 1 bar and on the right side 
is pR = 0.6784 bar. The initial velocity is set to zero, initial temperature is set to T = 300 K 
and initial pressure in the nozzle is p = 1 bar. 
 
Beside the calculations with the WAHA code, the calculations with the test code using the 
conservative variables were also performed. The transient calculations were stopped when the 
steady state was achieved.  
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Figure 3: Steady-state flow in convergent-divergent nozzle, comparison of the WAHA code 
scheme and the conservative scheme results. 

Steady-state conditions are established after approximately 0.1 s. Figure 3 shows steady-state 
pressure, velocity, and mass flow rate profiles . The results of the conservative scheme are 
practically the same as the analytical solutions of the steady-state problem (0.1% difference in 
the mass flow rates). The conservative profile of the mass flow rate shows a spike in a single 
volume, which lies within the shock wave in the divergent part of the nozzle. This spike is 
due inability of the conservative scheme to predict the position of the shock with accuracy 
greater than the length of a single control volume. This discrepancy becomes zero only when 
the shock position is exactly between two discrete points.  
 
As seen in Fig. 3, the WAHA code predicts the correct critical mass flow rate, however, it 
fails to predict the stationary shock where supersonic to subsonic transition takes place in the 
divergent section of the nozzle. The conservation of mass (energy, momentum) is accurate to 
0.5% as long as there are no stationary shocks in the solutions. As such shocks do not appear 
in two-phase critical flows (see critical flow cases in the paper by Gale et. al., 2006) and in 
critical flows of pure liquids, this deficiency does not seem to present a large limitation for the 
WAHA code. 
 

 
Oscillations of the liquid column in the U-shaped pipe. The U-shaped pipe is partially filled 
with water and ideal gas (case 1) or vapor (case 2) with its boundaries sealed. The modelled 
pipe has constant cross-section and length of 20 meters. The wall friction is excluded from the 
calculation, while the basic WAHA inter-phase friction correlation for thermal equilibrium 
flow are applied in the first case and basic WAHA correlation for gas-liquid flow in the 
second case. The initial conditions are set for pressure to p = 1.0 bar, for liquid velocity to vl 
= 2.1 m/s, and for temperature to T = 373.1 K.  Figure 4 shows the initial position of the slug  
at time t = 0.0 s. The pipe is initially half filled with water and initial velocity gives 
disturbance into the system. The first graph in Fig. 4 shows deformation of the slug due to the 
initial thermal instability and due to the transport. It also shows comparison of results from 
two different models, the gas-liquid model and the vapor-liquid model, after 30 s of real time. 
Graphs in Fig. 5 show velocity history at the middle of the pipe (bottom). After 30 seconds of 
the transient, mass and total energy non-conservation for the vapor-liquid case is 0.03% and 
0.4%, respectively, and 0.1% and 1.2% for the gas-liquid case. 
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Figure 4: Vapor and gas volume fractions at t = 30 s 
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Figure 5: Vapor (left) and gas (right) velocity history at the bottom of the U-tube. 

 
 
"Dam-break" problem in the horizontal pipe has been modelled in a pipe with constant 
cross-section and length of 2.0 meters. The pipe is closed  on both ends. Liquid and gas phase 
are initially separated with a dam (membrane) in the middle of the pipe, which breaks at time 
t = 0.0 s. The inter-phase heat and mass transfer are excluded from the calculation (i.e. ideal 
gas option is applied). The initial conditions along the pipe are constant with pressure p = 1.0 
bar, velocity v = 0.0 m/s and temperature T = 300  K.  
 
In the first dam-break problem, the vapor volume fraction on the left side of the dam is 
αL=0.501 and slightly lower on the right side αR=0.5. This case was used to compare the 
calculated speed of the small surface waves in shallow water with the theoretical value, which 
is smghvt /74.0==  (where h presents the liquid depth and g gravitational acceleration). For 

vapor volume fraction α=0.5, the liquid depth is equal to the pipe radius, which is obtained 
from the pipe cross-section A = 0.01 m2. Rough estimation of the wave speed from WAHA 
results, where the left and the right waves passed a distance of 0.37 (±0.01) m in 0.5 s, is 0.74 
m/s, which is equal to the theoretical prediction. 
 
In the second dam-break problem, the left and right vapor volume fractions are αL = 1.0 and 
αR = 0.0. Figure 6 below shows the results of the second dam-brak problem. After the dam 
breaks, water in the pipe starts to oscillate i.e. waves are being reflected from the closed ends. 
The horizontally stratified stagnant state is achieved after sufficiently long time, due to the 
dissipation of the momentum through the wall friction. Mass and total energy non-
conservation during the first 5 seconds of the transient is 0.01% and 0.4%, respectively. 
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Figure 6: Vapor volume fraction history in the middle of the pipe and vapor volume fraction 
profiles at different times. 
 
 
4. Integration of the relaxation source terms 
 
In the second sub-step of the operator splitting scheme, Eq. (4), is integrated over the 
convective time step tΔ  with the first-order explicit method at each grid point. Time steps of 
the integration depend on the stiffness of the relaxations and can be much shorter that the 
main time step tΔ . First-order accuracy of this sub-step is compensated by the shorter time 
steps in integration of Eq. (4).  
 
Another option, which is available in the WAHA code, is instantaneous relaxation of the 
source terms in Eq. (4). In this case, it is assumed that the inter-phase exchange processes are 
infinitely fast. Integration of Eq. (4) with infinite values of inter-phase friction (Ci), and 
liquid-interface and gas-interface volumetric heat transfer coefficients (Hif, Hig) is not 
possible. However, the relaxed state can be found directly as the both phase velocities become 
equal to the mixture velocity and the phase properties (densities, internal energies) become 
equal to the equilibrium properties. The properties of the thermal equilibrium are calculated 
from the given mixture density and the mixture internal energy. 
 
The relaxation source terms of the two-fluid model do not affect the properties of the mixture 
at a given point; mixture density mρ , mixture momentum mmv ρ , and mixture total energy 

mme ρ  should remain unchanged after the integration of the relaxation source terms. In 
principle it is possible to choose a set of basic variables )T ,T  vv ,e ,v, (  =  gffgmmmmmM ,−ρρρψr , 

that enables simplified integration of the relaxation source terms. If  Mψr  is chosen as a vector of 
basic variables, only a system of three differential equations is solved instead of the system of 
six differential equations, because there are no relaxation source terms for the first three 
components of the vector  Mψr . This reduction of the system is only partially taken into account 
in the WAHA numerical scheme. Only one relaxation equation for the inter-phase friction is 
solved for the relative velocity fgr vv v −= . Subsequently, the phase velocities are calculated 

from the relaxed relative velocity  vr  and the known mixture velocity  vm , which remains 
unchanged. Similar reduction of the thermal relaxation source terms is not used, because it is 
difficult to calculate the fluid state (pressure p and vapor volume fraction α ) from the 
variables )T ,T   e, ( gfmmm ,ρρ  that are result of such relaxation. The problem is similar as in the 

case of the conservative variables, which are also not very convenient input for the water 
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properties. Thus, thermal relaxation in the current version of the WAHA code is calculated 
with variables )T ,T   p, ( gf,α . 

 
The time step for the integration of the source terms StΔ  is not constant and is controlled by the 
relative change of the basic variables. Currently, the maximal relative change of the basic 
variables in a single step of the relaxation source term integration is limited to 0.01 in order to 
obtain results that do not depend on the numerics. When it is necessary, the time step StΔ  is 
further reduced to prevent the sign change of temperature differences sf TT −  and sg TT − , where 

sT  is the saturation temperature at given pressure. If sign change is encountered, the new values 
are discarded, the time step is halved and new values are calculated again with the halved time 
step. If the time step StΔ  drops below 10-19 s, the integration is interrupted and the code stops 

issuing a failure message. If the steam or liquid volume fractions drop below 1210−=ε , the 
relaxation is also stopped as one of both phases disappeared. 
     
Source terms describing inter-phase exchange are weak when the two-phase mixture is close to 
thermal and mechanical equilibrium. In that case the time step for their integration StΔ  is equal 

to the convection time step tΔ . When the mixture is far from equilibrium, the source term 
integration time step StΔ  can be a few orders of magnitude shorter that tΔ . As a consequence a 

few hundred or thousand sub-steps can be required to integrate the relaxation sources over a 
single convection time step tΔ .  
 
As long as either vapor or liquid volume fraction is smaller than 610− , the WAHA code uses 
instantaneous thermal and mechanical relaxation. In other words, homogeneous-equilibrium 
mixture is assumed in such conditions.  As the vapor or the liquid volume fraction grows over 
that limit, the WAHA code starts with application of the relaxation process described above 
 
Possible further work in the field of the relaxation source terms integration is the 
implementation of the implicit time advancement, which would be faster than the current 
explicit procedure. 
 
Two-phase shock tube test case. Part of the results in this section can be reproduced only with 
modification of the WAHA source code, where the fixed values are chosen for the coefficients 
Ci, Hif and Hig of the inter-phase heat, mass, and momentum exchange source terms. Results 
without relaxation source terms and with infinitely fast relaxation can be obtained without 
modification of the WAHA source. The case was developed to test the procedure for the 
integration of the relaxation source terms. Detailed discussion and more results can be found 
in Tiselj et. al. (2003). Two-phase shock-tube is the Riemann problem for the two-fluid 
model, i.e. a single discontinuity in 1D. Results in Fig. 8 and Fig. 9 are for the following 
initial conditions:  
 
x < 50 m:  p = 15 MPa, α = 0.1, vf = vg = 0.0, Tf = Tg = 615.3 K 
x > 50 m:  p = 10 MPa, α = 0.5, vf = vg = 0.0, Tf = Tg = 584.2 K 
 
As can be noticed, the phasic temperatures and phasic velocities on both sides are equal, thus 
the initial state can be used as an input for the six-equation WAHA model and also for the 
three-equation Homogeneous Equilibrium Model (HEM). The HEM results in this section are 
obtained with similar numerical scheme as the WAHA code results, but with the conservative 
variables.  
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Figure 7 presents a series of five simulations with the two-fluid model (WAHA code) and one 
simulation with the HEM model, on a grid with 100 nodes. The results are presented at time 
t=0.081 s. Calculations with the two-fluid model were performed using various constant 
values of the coefficients Ci, Hif and Hig. Values of the coefficients are written in each graph 
of the Fig. 7. The stratification factor was set to S = 0, i.e., the virtual mass term was used in 
equations, while the interfacial pressure was zero. It is important to stress that virtual mass 
presents significant inter-phase friction, which is present in all simulations. The phasic 
velocities are shown in the left and the phasic temperatures in the right column of the Fig. 7. 
No inter-phase exchange was allowed in the first simulation (first row in Fig. 7). One can see 
a significant difference between the solutions of the two-fluid model and the solutions of the 
HEM model. Shocks traveling right and rarefaction waves traveling left are much faster in 
two-fluid model than in the HEM model. Discontinuity in the middle of the tube, which exists 
in the two-fluid model solutions, does not exist in the HEM solutions. Larger coefficients are 
used in the next simulation (second row in Fig. 7). One can see that the phasic velocities are 
closer, while the phasic temperatures are still far away. In the third simulation (third row in 
Fig. 7), the phasic velocities are quite close, while differences in  the temperatures are still 
significant. Here it can be seen that discontinuities of the two-fluid model become smeared; 
instead of the sharp shocks, rarefaction waves and contact discontinuities, the waves are 
interlaced. The phasic velocities and temperatures are very close together in the fourth 
simulation (fourth rows in Fig. 7) and also close to the solutions of the HEM model. When the 
coefficients are increased further (bottom row in Fig. 7), a two-fluid model with extremely 
high inter-phase mass, momentum and energy transfer is obtained. Such two-fluid model is 
practically equal to the three-equation HEM model. Results obtained with Ci = 106 and Hif = 
Hig = 109 are practically the same as results obtained with infinite values of the coefficients. 
     
Pressure and vapor volume fractions are presented in Fig. 8 only for the two limiting cases: 
 
- infinitely fast relaxation (WAHA – HEM), 
- no relaxation. 
 
It can be noticed in the bottom row of Fig. 7 that solution of the WAHA code with very large 
values of coefficients is more "diffusive" than the HEM solution. This is due to the non-accuracy 
of the operator splitting technique (see Section 2 and Tiselj et. al. 2003). 
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Figure 7: Shock-tube velocities vf, vg and temperatures Tf, Tg of the HEM model and two-
fluid model with various inter-phase drag (Ci) and heat transfer coefficients (Hif , Hig).    
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Figure 8: Pressure and vapor volume fraction profiles at t = 0.081 s predicted by WAHA with 

instantaneous relaxation (HEM - grey) and without any relaxation (no relaxation - black). 
 
 
5. Single-phase to two-phase and two-phase to single-phase transition 
 
Single-phase flow in the WAHA code is modelled as two-phase flow with volume fraction of 
the non-existing phase set to 1210−== εα RESIDUAL . As six eigenvalues and eigenvectors are also 
defined in single-phase flow volumes, this approach automatically saves the problem with 
convection of two-phase flow into the volume previously filled with single-phase flow.  
    
The problem of transition from single to two-phase flow (or reverse) during the convective 
sub-step of the operator-splitting scheme is the negative vapor volume fraction or the vapor 
volume fraction larger than 1.0 that can appear within the applied numerical scheme. The 
problem of 0<α  or 1>α  is solved with a patch that modifies flux of α  when it falls out of its 
bounds. Treatment of the negative vapor or liquid volume fractions in the WAHA code 
decreases accuracy of the numerical scheme, as it is a source of certain mass and energy non-
conservation (see details in Tiselj et. al. 2004). Single to two-phase flow transition often 
occurs in the U-tube simulations described in Section 3. In this case, it is responsible for the 
major part of the mass and total energy non-conservation. 
 
Separation of liquid and vapor in a vertical pipe is a hypothetical test case where the two-phase 
to single-phase transition plays an important role. The pipe has length of one meter and has 
two closed ends The initial conditions represent homogeneously mixed liquid and vapor. The 
pipe has constant initial vapor volume fraction α = 0.52, pressure p = 0.9 bar, velocity v = 
0.0 m/s, and temperature T = 370 K, along the pipe. Separation proceeds due to gravity. The 
WAHA correlations are applied for inter-phase heat, mass and momentum transfer. Liquid 
and vapor are separated in a few seconds. Graphs in Fig. 9 show the final steady-state 
distribution of the pressure and of the vapor volume fraction. Non-conservation of mass in the 
WAHA calculation is approx. 2%, which is more than in the other transients described before. 
Another weakness is exhibited in the code when the Van-Leer or the Superbee limiters are 
chosen; the separation test does not reach the expected steady-state. Thus, it is recommended 
to use the MINMOD slope limiter in all the WAHA code calculations. 
    
Steam appearance due to flashing. Flashing starts when pressure of a single-phase liquid 
drops below the saturation pressure. The subroutine flash is called just before the relaxation 
source term sub-step if the flow in the cell is a single-phase liquid and the pressure is lower 
than the saturation pressure at current liquid temperature. The process starts as a 
homogeneous-equilibrium process. A possible improvement of the flashing model is the use 
of flashing delay models. 
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Figure 9: Steady-state pressure and vapor volume fraction distribution after the separation of 

liquid and vapor mixture. 
    
     
Liquid appearance due to the onset of the condensation. Condensation starts in pure vapor 
when pressure increases above the saturation pressure at current vapor temperature. The 
process starts as a homogeneous-equilibrium process.   
    
Disappearance of the liquid/steam due to the vaporization/condensation. Disappearance 
of a particular phase is similar to its generation. When vapor or liquid volume fraction drops 
below the value 610− , the homogeneous-equilibrium assumption is used instead of the 
relaxation correlations. Instantaneous equilibrium can automatically change the flow from 
two-phase to single-phase. 
 
 
6. Water properties of the WAHA code 
 
WAHA water properties are tabulated with a separate program and stored in a table. The 
WAHA subroutines determine the properties with interpolation from that table. Dynamic 
viscosities, thermal conductivities and surface tension are obtained directly with interpolating 
functions from separate subroutines. The table with water properties was created with 
software from UCL (Seynhaeve et al. 1992) and it also contains description of the metastable 
states (superheated liquid and subcooled vapor).  
    
Vapour and/or liquid densities, and specific internal energies are tabulated for each chosen 
temperature and pressure: 
 
Temperatures:  
- T1 = 273.15 K,.....,  TNTP = 647.15 K, increment 1.0K, i.e. NTP=375 - two-phase area 
- TNTP+1 = 648.15 K ,....., TNT = 1638.15 K, increment 10.0 K, i.e., NT = 475 
 
Pressures: 
- p0=-95.0 bar,  
- p1 = 0.00611 bar,..., pNTP = 220.55 bar, two-phase area: each pressure is 

evaluated as a saturation pressure at the corresponding temperature: pj = psat(Tj), 
- pNTP+1=221.0bar, ..., pNTP+8=291.0bar, increment 10.0 bar,  

pNTP+9=350.0 bar, 
pNTP+10=400.0 bar, ... pNTP+16=1000.0 bar, increment 100.0 bar. 
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The number of pressures pj in the two-phase area is exactly the same as the number of 
temperatures NTP. Each pressure pj is evaluated as a saturation pressure psat at the 
corresponding temperature Tj, with p1 = 0.00611 bar and pNTP = 220.55 bar. Practical side of 
this choice is calculation of the saturation properties with exactly the same subroutines as the 
single-phase properties. Namely, arbitrary property can be calculated for a point (Ti,pj) and 
the saturation conditions are stored at i = j. 
     
There is one negative pressure value at which the metastable liquid properties are defined at 
temperatures from 273.15 to 647.15 K. As negative pressures occur very rarely, but might be 
still reached for a very short time during some water hammer transients, this simple extension 
of the water property tables prevents the calculation to crash if negative pressure is 
encountered in single phase liquid.  
    
For the input (p,u) or (p,T), the WAHA code water property subroutines find the three 
tabulated neighbours (p1,T1), (p2,T2), (p3,T3), which define a triangle that surrounds the point 
(p,u) or (p,T). Equation of a plane is found for the given three points as a function of pressure 
and temperature, e.g. for internal energy: u = k p + m T + n, where the values of derivatives 

( )Tpuk ∂∂= / , and ( )pTum ∂∂= /  have to be found. Similar linear equation is determined for 

density ρ . When internal energy is given as an input instead of temperature, the equation of 
plane is still formed as u = k p + m T + n  and temperature T calculated from it. This 
approach ensures that results of the two consecutive calls u0= u(p0, T0) and  T1=T(p0, u0) are 
identical.  
    
The values of derivatives could also be tabulated and later calculated with interpolation, 
however such water property subroutines are not consistent and were found to cause larger 
non-conservation of mass and energy. Thus, this approach is not recommended. 
    
The implemented of water property interpolation means that the main variables ρ , u are 
continuous, piecewise linear functions of T and p and vice versa, with discontinuous first 
derivatives at the boundaries of the triangles specified by the points (pi, Tj). The derivatives of 
the main parameters T, p, ρ , u, are piecewise constant inside each triangle and discontinuous 
at the triangle boundaries. Sonic velocity, which is calculated from the derivatives, is also 
discontinuous at the boundaries of the triangles. However, as the tabulated densities for (pi, Tj) 
points is rather fine, this does not present a problem for the WAHA code. 
    
Verification of the WAHA steam tables was performed with one of the earliest versions of 
WAHA code (version WAHA0 from 2002) with the WAHA steam tables, and the same 
WAHA code, but with the steam tables of RELAP5/MOD3.2.2 Gamma. Results of the 
comparison for the liquid and the vapour shock tube and for the Edwards pipe experiment 
(Edwards, O'Brien, 1970) can be found in the WAHA manual (Tiselj. et. al., 2004).The 
differences are practically invisible in the graphs, while the code is running roughly two times 
faster with the WAHA water property subroutines. 



 19 

7. Models of two-phase flow through sudden expansion, contraction, or branch 
 
This chapter gives a description of special models implemented in the WAHA code to 
simulate single and two-phase flow through an abrupt area change in a pipe. The second part 
of the chapter describes model of the branch, which is built on the abrupt area change model. 
     
The models were tested for the flow through a pipe expansion and a contraction. The results 
of single phase flow simulations were compared with analytical solutions and results obtained 
by the RELAP5 code.  
 
7.1 Abrupt area change model 
 
The abrupt area change model is needed, when flow passes through a sudden expansion or a 
contraction area in a channel. In that case, the transport equations cannot correctly model the 
physical situation, despite the variable pipe cross-section model used in the WAHA equations 
(see Section 2). The variable pipe cross-section model of the WAHA code is suitable if the 
contraction or expansion over the pair of neighbouring grid points of the pipe represents a 
small fraction (~10%) of the pipe cross-section. When the cross-section of the pipe is 
suddenly increased or decreased for a factor larger than approximately 2, it is more reliable to 
use an abrupt area change model.  
 
The implemented abrupt area change model is built on 3 basic assumptions: 
• steady-state balance conditions for conservative variables ϕ across the area change 

(marked with k → n),  
• no generation (or loss) of mass, momentum and energy at the surface, 
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• preservation of characteristics ξ in each pipe, 
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Figure 10: Grid point arrangement for the conservative-characteristic abrupt area change 
model with the ghost nodes kA and nA. 

Figure 10 shows the numerical grid used for the calculations. A ghost cell is attached to each 
end of the pipe and is used to prescribe the appropriate boundary condition. The numerical 
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algorithm checks all pipes and calculates the junction relations between the pipe k and the 
neighbouring pipe n. The conservative-characteristic model implements the conservation 
relations (21) between the ghost grid point kA and the ghost grid point nA. It also uses the 
relations (22), which extrapolate characteristic ξ  from the regular grid point kB or nB in the 
flow direction, if ξ is positive, and in the opposite direction, if ξ is negative. Using 
extrapolation of the positive characteristics ξ from the grid point nB to nA and of the negative 
characteristics ξ from the grid point kB to kA, the discrepancy vector F is defined as: 
 

        if 0≥jλ     ( ) ( )( )kBikAi
it

jij   L  = F ψψ −−1~               j = 1,...,6 

        else             ( ) ( )( )nBinAi
it

jij   L  =  F ψψ −−1~  

(23) 

 

The steady-state balance conditions for the conservative variables ϕ are then written between 
the grid points kA and nA as: 
 

        ( ) ( ) jkA F=− nA
itit ϕϕ  ,                                j = 7,...,12      (24) 

 

with arithmetic averaging of the non-conservative pressure gradients. By expressing the 
conservative variables with non-conservative )(ψϕϕ = , the discrepancy vector was minimized 
using the Newton-Raphson method: 
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The iteration procedure is stopped when  
 

        ( ) ( )( ) ( ) ( )( ) 7
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nAj
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nAj
it

kAj
it
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(26) 

 

It is important to note that the momentum balance in the point of the area change applied in 
the conservative-characteristic abrupt area change model is not the same as the momentum 
balance of the basic two-fluid model of the WAHA code. Namely, special terms like virtual 
mass term and interfacial pressure term are not taken into account in the momentum balance 
used in an abrupt area change model. On the other side, the characteristic variables are 
obtained from the basic two-fluid model of the WAHA code. Detailed description of the 
procedure is given in the manual of the WAHA code (Tiselj et. al. 2004). 
     
At the end of each time step, the junction models are introduced to calculate values of the 
primitive variables p, α, vl, vg, ul, ug in the ghost grid points kA and nA. 
 
Single-phase shock tube with an abrupt area change - contraction - liquid. The case 
represents liquid flow through a contraction modeled with an abrupt area change model. The 
modelled pipe has length of 5 meters, closed end on both sides (boundary conditions are 
irrelevant as the results are being taken before the waves reach the pipe ends) and an area change 
with a contraction factor A1/A2 = 20, at distance 3 meters from the beginning. The wall friction 
and momentum losses at the contraction are excluded. Although, the case is not very realistic, 
such results can be compared with analytical results derived for the low velocities. The 
numerical experiment starts at time t = 0.0 s when the membrane, which separates two different 
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states in the pipe, is ruptured. The initial thermo-dynamical state is defined with pressure, 
temperature and velocity: 
 
 AL=0.4 m2,   pL=1.0 107 Pa, vfL=vgL=0, TfL =584.2 K 
 AR=0.02 m2, pR=0.5 107 Pa, vfR=vgR=0, TfR=584.2 K 
 
Initial discontinuity is present at a position of 2 meters.  
    
Three different curves are shown in each graph of Fig. 11. The first line shows initial 
conditions, the second curve at t = 0.0004 s shows the shock wave travelling toward the 
contraction, and the third curve shows the behaviour of the transmitted and reflected waves. 
Our concern is behaviour of the waves after the rupture of the membrane and after the 
entrance into the contraction. The reflected and transmitted waves are clearly seen in  Fig. 11. 
Their magnitude is in agreement with equations derived from the Joukovsky theory (Martin, 
Wiggert, 1996), which predicts the "transmittance" factor: 
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where p0 presents the initial pressure at the contraction, p/ is the pressure of the incident wave, 
p// the pressure of the transmitted wave, and c1, c2 are sonic velocities, which are equal in this 
case. The theoretical pressure p// after the contraction obtained from the equation (27) is: 

barp
barp

barp
4.97

0.50

9.74 //

0

/

=⇒
⎪⎭

⎪
⎬
⎫

=
= .    (28) 

The WAHA code calculates p//
WAHA = 97.6 bar. 
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Figure 11: Pressure and velocity profiles at different time. 

 
Single-phase shock tube with an abrupt area change - expansion - vapor. The modelled 
pipe has length of 5 meters, closed ends and an area change with the expansion factor A2/A1 = 
20, at distance 3 meters from the beginning. The wall friction is excluded in order to allow 
comparison with analytical results. The numerical experiment starts at time t = 0.0 s when the 
membrane at position 2 meters from the beginning, which separates two different states in the 
pipe, is ruptured. The initial thermo-dynamical state is defined with pressure, temperature and 
velocity: 
 
 AL=0.02 m2,   pL=1.5 107 Pa, vfL=vgL=0, TfL =644.17 K 
 AR=0.4  m2,   pR=1.0 107 Pa, vfR=vgR=0, TfR=607.96 K 



 22 

     
There are three different curves shown in each graph of Fig. 12. The first line shows initial 
conditions, the second curve at t = 0.0008 s shows the shock wave travelling toward the 
expansion, and the third curve shows the behaviour of the transmitted and reflected waves. 
Our concern is behaviour of the waves after the rupture of the membrane and after the 
entrance into the expansion. The reflected and transmitted waves are clearly seen in Fig. 12. 
The results obtained with the Joukovsky equation (27) (Martin and Wiggert, 1996) give 
pressure p// : 
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The WAHA code calculates p//
WAHA = 102.0 bar. In derivation of the Joukovsky equation, it is 

assumed that fluid velocity is much smaller than the local speed of sound, and the density is 
constant. The assumptions  are responsible for a small pressure jump that exists at the 
discontinuity after the reflection of the wave.   
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Figure 12: Pressure and velocity profiles at different time. 

 
7.3 Model of flow through the branch 
 
A branch model was developed for the WAHA code to connect three pipes in a single point 
(Fig. 13). A junction of more than three pipes in a single point is not allowed in the WAHA 
code. A branch does not have a volume; it is merely a point that connects three pipes. 
Treatment of the branch connection is discussed by Martin and Wiggert  (1996), and by Wylie 
and Streeter in the sections 3-5 of their book (1978). A slightly modified version of their 
approach is used in the WAHA code. In the branch model a "dominant" pipe is defined first, 
as a pipe with the largest mass flow rate:   

( )321max φφφ=φ ,,main  , (30) 

where φi are mass flows in the connected pipes. The state in the other two connected pipes is 
averaged. In the case, when the main pipe has index i = 1, the averaged state is 
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The boundary values in the pipes are then calculated in the same was as in the abrupt area 
change model with mainψ←ψ rr

1 , avψ←ψ rr
2  and A2 ←  ( A2+A3 ). 

   After the abrupt area change calculation is finished the boundary values in the dominant 
pipe 1 are already prescribed, while the values of the averaged pipe are taken as boundary 
values of the pipes 2 and 3, except the phasic velocities, which are not taken as the velocity of 
the averaged pipe, but are extrapolated from the pipes 2 and 3. 
 
Two-phase shock tube with a branch. This case shows behaviour of the pressure pulse 
through the branch filled with pure liquid. A sketch of the modelled branch is shown in Fig. 
13.  
 
 

INITIAL CONDITIONS (P1/P6/P2):
Temperature T = 293/293/293 K

Vapor velocity v = 1/0.769/0.769 m/s
Presure p = 80/80/80 bar

Vapor volume fraction  - pure liquid

GEOMETRY (P1/P6/P2):
Length l = 10/5/3 m

Diameter d =  7.9/7.9/0.7 mm

Pipe 1...1 2 3 4 100999897...
Pipe 6...1 2 3 4 50494847...

Pipe 2..1 2 3029..

const.

Closed end

p=const.

 

Figure 13: Geometry and initial conditions of the single-phase branch model. 

 
The left pipe is 10 m long and its left end is connected to a large water tank modelled as a 
constant pressure boundary condition. The upper pipe is 3 m and the right pipe is 5 m long. 
The left and the right pipe have the same cross-section A = 0.1 m2, while the upper pipe has 
the cross-section A2 = 0.03 m2. Initially, the following stationary state is applied: ρ1 = ρ2 = ρ6 

= 1001.9 kg/m3, v1 = 1 m/s, v2 = v6 = 0.769 m/s and p1 = p2 = p6 = 80 bar. The flow direction is 
from the tank on the left, through the pipe 1 into the pipes 2 and 3. At the time t = 0, the right 
end of the pipe 6 is closed and the pressure pulse expands through the piping system. Figure 
14 shows the time history of the pressure in the points 1, 2 and 3, which are located 1.05 m 
from the end of the pipe 1  
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Figure 14: Comparison of the WAHA and RELAP5 pressure history in the points 1, 2 and 3 - 
single-phase liquid case. 

 
(point p1), 0.15 m from the beginning of the pipe 6 (point p2), and 0.95 m from the beginning 
ofthe pipe 2 (point p3). The WAHA code results are compared with RELAP5/MOD3.3 code 
simulation. The only differences are due to the less diffusive numerical scheme in the WAHA 
code. 
    
The abrupt area change model and the branch model were tested and verified for the single-
phase liquid and gas flows, but have not been thoroughly tested in the various two-phase 
situations. Thus, the model is to be used with caution in two-phase systems, especially in the 
horizontal two-phase flows where stratification might appear. The reduced CFL number is 
recommended with values ~0.5, if problems with the abrupt area change model appear. 
    
The current abrupt area change and branch models do not contain generation or loss of 
momentum and energy. These models, especially momentum losses, can be included into the 
abrupt area change and branch models as additional wall friction coefficients in the nodes 
near the connection to obtain more realistic flow behaviour.   
 
8. Conclusions 
 
The present work describes the numerical scheme used to solve the 1D six-equation two-fluid 
model in the WAHA code. Rather "standard" numerical scheme was used for the hyperbolic 
part of the equations. New approach is applied for the non-relaxation terms, which are 
integrated with a similar scheme as the hyperbolic part of the equations. Such approach 
preserves steady-state solutions (e.g. steady flow in ducts of variable cross-section, or steady-
state flows in vertical pipes under the influence of gravity). Operator splitting is used only for 
the relaxation terms due to their stiffness. Moreover, operator splitting of the stiff relaxation 
sources introduces numerical error similar to numerical diffusion. 
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The results obtained with the WAHA code are available in the WAHA3 (current code 
version) code manual on internet (see Tiselj et. al. 2004). They include different single-phase 
gas and liquid tests. Some of these results are compared with results of the numerical scheme 
with conservative form of the Euler equations.  
    
Further modifications of the WAHA code, such as an implicit integration scheme for the 
relaxation source terms, and more detailed treatment of the single to two-phase flow transition 
, could be implemented. Other changes are mainly related to the possible new physical models 
in the code, like fluid-structure interaction modelling and introduction of an additional 
equation that would trace the amount of the non-condensible gas in the vapor phase.  
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