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ABSTRACT  
 
 Influence of the stiff inter-phase exchange source terms on the propagation velocities of the two-
fluid models is analyzed. If infinitely fast inter-phase exchange is assumed, i.e. instantaneous thermal 
and mechanical relaxation, the results of the two-fluid models should be similar to the results 
homogeneous-equilibrium model, despite different characteristic velocities of both models. Results of 
the present work show, that the propagation velocities of the two-fluid model with infinitely stiff 
relaxation terms are indeed equal to the propagation velocities of the homogeneous-equilibrium model - 
despite large differences in the eigen-structures of the two-fluid models and HEM model. It is known 
that the speed of sound in two-fluid model is not the same as the HEM speed of sound, however, the 
propagation speed of the sonic waves of the two-fluid models with infinitely stiff relaxation terms is 
close to the HEM speed of sound and not the speed of sound of the two-fluid model. For non-stiff 
relaxation source terms the characteristic velocities of the two-fluid model are approximately equal to 
the wave propagation velocities. 
 
 
1.  INTRODUCTION  
 
   Typical two-fluid model used in computer codes like RELAP5 (Carlson et al., 1990), TRAC 
(Mahaffy, 1993) or Cathare (Bestion, 1990) can be written as: 

   ,S  =  
x

  B  +  
t

  A
∂
∂

∂
∂ ψψ  (1) 

Similar two-fluid model is used in computer code WAHA, which is being developed as a part of 
WAHALoads project within the 5th research program of the European Union (Giot et. al. 2001, Tiselj et. 
al. 2003), with a goal to simulate water hammer transients in the nuclear systems. The two-fluid models 
in the above mentioned codes describe two-phase flow of water with six equations: mass, momentum 
and energy balances for vapor and liquid. Differential terms are collected on the left-hand side of the 
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equations and the non-differential terms are collected on the right. Source terms in vector S  can be 
divided into two groups: 
-   Inter-phase exchange source terms (relaxation source terms) - RS - terms describing inter-phase 

mass, momentum, and energy transfer, which tend to establish mechanical ( 0  vr → ) and thermal 
equilibrium ( T  T  ,T sgf → ). Characteristic time scale of these relaxation source terms can be much 
shorter than the characteristic time scale of the acoustic waves, thus, these source terms are often 
stiff. 

-  Other source terms RNS − : wall friction, volumetric forces, and wall-to-heat transfer source terms 
are not relaxation sources, however they have characteristic time scale longer than that of the 
acoustic waves and they seldom present problems for the numerical schemes.  

   A lot of work has been done in the past few years in the field of the numerical solutions of the 
hyperbolic part of the equation, which are based on the evaluation of the characteristic velocities of the 
two-fluid models (Toumi, Kumbaro, 1996, Tiselj, Petelin, 1997, or Evje, Fjelde, 2002 ...). Most of that 
work was focused on the solution of the hyperbolic part of the two-fluid model (Eq. (1) without source 
terms), while only a small part of attention was focused on the source terms. These numerical schemes 
present an extension of similar schemes developed for simulations of single-phase compressible flows 
(Euler equations). 
   One of the main differences between the Euler equations of ideal gas flow and equations of two-fluid 
models: characteristic velocities are propagation velocities of the waves in single-phase compressible 
flow, however, characteristic velocities of the two-fluid models of two-phase flow are not necessarily 
the propagation velocities. 
   Results of the present paper show the influence of the stiff inter-phase exchange source terms on the 
propagation velocities of the two-fluid models. When infinitely fast inter-phase exchange is assumed in 
the two-fluid model, i.e. instantaneous thermal and mechanical relaxation, the results of the two-fluid 
models are similar to the results homogeneous-equilibrium model (HEM model), despite different 
characteristic velocities of both models. Results of the present work show, that the propagation 
velocities of the two-fluid model with infinitely stiff relaxation terms are indeed equal to the propagation 
velocities of the homogeneous-equilibrium model - despite large differences in the eigen-structures of 
the two-fluid models and HEM model. 
 
 
2.  TWO-FLUID MODEL EQUATIONS 
 
   Results in the present paper were obtained with WAHA computer code (Giot et. al. 2001, Tiselj et. 
al. 2003) that solves hyperbolic equations. The numerical scheme applied is based on the Godunov 
method. Its behavior with the equations of the two-fluid models was analyzed by Tiselj and Petelin 
(1997) while the brief description of the numerics is given in the next section. Mathematical model 
considered in this paper is six-equation two-fluid model similar to the models of RELAP, TRAC, or 
Cathare computer codes. The basic equations are mass, momentum and energy balances for vapor and 
liquid, without terms for wall-to-fluid heat transfer: 
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Specific total energy of liquid or gas is: 
 

2/2vue +=  (7) 
 
and specific enthalpy of  liquid or gas is: 
 

ρ/puh +=  (8) 
 
Differential terms are collected on the left-hand side of the equations and the non-differential terms 
are collected on the right. Pipe cross-section A can vary as a function of coordinate x and time:  
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The Ae terms take into account elasticity of the pipe walls, which modifies the propagation velocities 
in the elastic pipes and is especially important when modeling water hammer transients. Pipe 
elasticity is not taken into account in the present work. 
   Additional closure relations needed: 
 
1)  Two additional equations of state for each phase are needed. The equation of state for phase k is 

 

.   du 
u

  +  p d  
p

  =   d k
k

k

p

k

u
k

k








∂
∂









∂
∂ ρρ

ρ  (10) 

 
Derivatives on the right hand side of the Eq. (10) are determined by the water property 
subroutines developed for WAHA code using pressure and temperature or specific internal energy 
as input. Water properties are pre-tabulated and saved at approximately 400 pressures and 400 
temperatures. Densities are treated as a continuous piecewise linear functions of p and uk (or Tk), 
with discontinuous derivatives (details in Tiselj et. al. 2003). 
 

2)  The virtual mass term CVM in Eqs. (3) and (4) is used to obtain hyperbolicity of equations: 
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Value of coefficient Cvm was tuned to ensure the hyperbolicity of the two-fluid model equations 
(see Tiselj, Petelin, 1997 for details). It worths to mention that applied virtual mass term does not 
ensure unconditional hyperbolicity of the equations. For very large relative velocities (comparable 
to sonic velocity) complex eigenvalues may appear, however these are extremely rare occasions.   
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3) Interfacial pressure term exists only in stratified flow: 
 

gDSp gfi ))(1( ρραα −−=  (12) 
 
where S presents the stratification factor (S=0 for dispersed flow, S=1 for horizontally stratified 
flow, 0<S<1 for transitional flow - see Tiselj et. al. 2003 for details). 
 

4) WAHA code distinguishes two flow regimes: dispersed and horizontally stratified with transition 
area between both regimes. Source terms are flow regime dependent and their detailed form is 
given in the WAHA manual (Tiselj et. al. 2003). Terms that do not include derivatives - source 
terms - are: 
  4.1)   Terms with Ci - inter-phase drag. 
  4.2)   Terms with Γg, Qig, Qif  - inter-phase exchange of mass and energy with: 
           Γg=-(Qif+Qig)/(hg-hf) - vapor generation term, 
           Qif=Hif (Ts-Tf) ,  Qig=Hig (Ts-Tg) - interface heat transfer terms, 
           Hif, Hig - liquid-interface and gas-interface heat transfer coefficients. 
  4.3)   Terms due to the variable pipe cross-section.   
  4.4)   Ff,wall , Fg,wall - wall friction. 
  4.5)   Term with  g cosθ - volumetric forces. 
  4.6)   Terms for wall heat transfer and mass and momentum exchange due to the boiling or 
         condensation on the wall - these sources are neglected in WAHA code.  

   Sources from the points 4.1) and 4.2) are the so-called relaxation source terms: inter-phase mass, 
momentum, and energy exchange terms, which tend to establish thermal and mechanical equilibrium 
between the phases. Characteristic time scale of these source terms can be much shorter than the 
characteristic time scale of the acoustic waves. These are stiff source terms that require special 
numerical treatment. 
   Other source terms: wall friction, volumetric forces, and wall-to-heat transfer source terms are not 
relaxation sources, however they have characteristic time scale longer than that of the acoustic waves 
and they seldom present problems for the numerical schemes. 
 
     
2.  NUMERICAL METHOD 
 
   The numerical scheme of WAHA code is based on the characteristic upwind method. Its behavior 
with the equations of the two-fluid models was analyzed by Tiselj and Petelin (1997) while a brief 
description of the numerics is given below. The system of equations (1)-(6) can be written in the 
following non-conservative form, which is suitable for the numerical solving: 
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where ψ  represents the vector of the independent variables ) uuv,v, p, (  =  gfgf ,,αψ , A  and  B  

are matrices of the system, and  S  is a vector with non-differential terms in the equations. The 
numerical scheme used in 2F code is a two-step scheme with operator splitting; i.e. convection with 
non-relaxation source terms RNS − and relaxation sources RS  in Eq. (13) are treated separately: 
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One time step includes the following two sub-steps (superscripts 1+n  ,n  denote time levels - * 
denotes intermediate time level): 
 
1) - Convection terms and non-relaxation sources - Eq. (14): 
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2) - Integration of the relaxation sources - Eq. (15) : 
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Step 1) Eq. (16) is solved with second-order accurate characteristic upwind scheme that requires  
hyperbolicity of the equations. Eigenvalues and eigenvectors are explicitly calculated: 
 

1−⋅Λ⋅= LLBA-1  (18) 
 
and upwind discretisation is used for each characteristic equation. Second-order accuracy is achieved 
with slope limiters. Algorithm for integration of non-relaxation source terms is described in Tiselj et. al. 
2003. 
Step 2) Eq. (17) is integrated over the t∆  (convective time step) with first-order explicit method in 
each grid point. Time steps of the integration depend on the stiffness of the relaxations and can be much 
shorter that the main time step t∆ . First-order accuracy of this sub-step is compensated by the shorter 
time steps in integration of Eq. (17). Another option is available in WAHA code - instantaneous 
relaxation of the source terms in Eq. (17). An assumption in that case is that the inter-phase exchange 
processes are infinitely fast. Integration of Eq. (17) with infinite values of inter-phase friction (Ci), and           
liquid-interface and gas-interface heat transfer coefficients (Hif, Hig) is not possible, however, the 
relaxed state can be found directly: both phasic velocities become equal to the mixture velocity and 
the phasic properties (densities, internal energies) become equal to the equilibrium properties. 
Properties of the thermal equilibrium are calculated from the given mixture density and mixture 
internal energy. 
   The operator splitting given by Eqs. (16) and (17) is formally first-order accurate. However, the 
numerical tests have shown, that despite the formally lower order of accuracy, the results are 
practically the same as with the second-order accurate Strang splitting (Le Veque, 1992). 
   Numerical scheme of WAHA code is non-conservative (see vector of the independent variables  
ψ  near Eq. 13). Non-conservative schemes are known to converge to the wrong solutions when shocks 
are present in the flow field (see Tiselj , Petelin, 1997), however, in typical single-phase water hammer 
transients, these "wrong" solutions are very close to the exact solutions. In two-phase flows, shock 
waves are actually not discontinuities and their velocities are not well known, thus, errors due to the 
non-conservative numerics are much lower than non-accuracy of the applied physical models. 
According to the present experience, non-conservative scheme does not seem to be a big deficiency 
for short transients like water hammer events. 
 
 
4.  RESULTS 
 
   This section shows numerical results for two cases: 
- In sub-section 4.1 the two-phase shock tube problem is solved with WAHA code with several 
different values of inter-phase exchange coefficients Ci, Hif, Hig  in relaxation source terms. WAHA 
results are compared with results of the homogeneous equilibrium model (HEM) of two-phase flow, 
with neglected wall friction, volumetric forces and wall-to-fluid heat transfer: 
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- In sub-section 4.2 the two-phase critical flashing flow in convergent-divergent nozzle is simulated with 
WAHA code and with RELAP5 code with HEM options switched on and choking option switched of.  
 
4.1 Shock tube 
 
Two-phase shock-tube is Riemann problem for the two-fluid model: a single discontinuity in 1D. 
Results in Fig. 1 are for the following initial conditions: 
 
x<50 m: p=15 MPa, α=0.1, vf=vg=0.0, Tf=Tg=615.3 K 
x>50 m: p=10 MPa, α=0.5, vf=vg=0.0, Tf=Tg=584.2 K 
 
As can be noticed, the phasic temperatures and phasic velocities on both sides are equal, thus the 
initial state can be used as input for six-equation WAHA model and for HEM model.  
   Figures 1 and 2 present a series of five simulations with the two-fluid model (WAHA code) and one 
simulation with the HEM model ("home-made" code), on coarse (100 nodes) and fine (2500 nodes) grids, 
respectively. Results are presented at time t=0.081 s. Calculations with two-fluid model were performed 
with different various coefficients Ci, Hif, Hig - values of the coefficients are written in each graph of the 
Figs. 1 and 2. Stratification factor (Eqs. (10), (11)) was set to S=0, i.e., the virtual mass term was used 
in equations, while the interfacial pressure was zero. It is important to stress that virtual mass presents 
significant inter-phase friction, which is present in all simulations. Results present phasic velocities in 
the left and phasic temperatures in the right column. No inter-phase exchange was allowed in the first 
simulation (Figs. 1 and 2, first row) and one can see a significant difference between the solutions of the 
two-fluid model and the solutions of the HEM model. Shocks traveling right and rarefaction waves 
traveling left are much faster in two-fluid model than in the HEM model. Discontinuity in the middle of 
the tube that exists in two-fluid model solutions does not exist in HEM solutions. Larger coefficients are 
used in the next simulation (second row in Figs. 1, 2): one can see that the phasic velocities are closer 
now, while the phasic temperatures are still far away. In the third simulation (third rows in Figs. 1, 2) the 
phasic velocities are quite close, while the temperatures are still quite different. Here it can be seen that 
discontinuities of the two-fluid model become very smeared: instead of the sharp shocks, rarefaction 
waves and contact discontinuities, the waves are interlaced. The phasic velocities and temperatures are 
very close together in the fourth simulation (fourth rows in Figs. 1, 2) and also close to the solutions of 
the HEM model. When the coefficients are increased further (bottom row in Figs. 1, 2) - we obtain a two-
fluid model with extremely high inter-phase mass, momentum and energy transfer, which is practically 
equal to the three-equation HEM model. Coarse grid (bottom row in Fig. 1) results obtained with Ci=106 
and Hif=Hig=109 are practically the same as results obtained with infinite values of the coefficients. On 
finer grid (Fig. 2 bottom) a small, but visible difference between Ci=106 and Hif=Hig=109 results and 
infinite values exists: results are plotted for Ci=∞  and Hif=Hig=∞ as WAHA code allows "infinite 
coefficients, i.e. instantaneous relaxation.  
   It can be noticed in the bottom row of Fig. 1 that solution of the WAHA code with very large values 
of coefficients (infinite) is more "diffusive" than the HEM solution. The same effect is present on fine 
grid but barely seen in the bottom row of the Fig. 2. This is due to the non-accuracy of the operator 
splitting technique (see Tiselj, Horvat, 2002 for details). 
   Comparison of Figs. 1 and 2 shows that computations are practically "grid independent" with the 
same intermediate states on coarse and fine grids. 
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Fig. 1: Phasic velocities vf, vg and phasic temperatures Tf, Tg of two-fluid models converge toward the 
values predicted by HEM model, as the inter-phase drag coefficient (Ci) and heat transfer coefficients 
(Hif , Hig) are increased. Propagation velocities of two-fluid model also strongly depend on the 
strength of the relaxation source terms. Coarse grid results (100 nodes).
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Fig. 2: Phasic velocities vf, vg and phasic temperatures Tf, Tg of two-fluid models converge toward the 
values predicted by HEM model, as the inter-phase drag coefficient (Ci) and heat transfer coefficients 
(Hif , Hig) are increased. Propagation velocities of two-fluid model also strongly depend on the 
strength of the relaxation source terms. Fine grid results (2500 nodes). 
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   Results shown in Figs. 1, 2 raise the question of the importance of the eigenvalues of the two-fluid 
model and numerical schemes based on characteristic decomposition. Accurate prediction of eigenvalues 
is certainly important at low rates of, heat, mass and momentum transfer. However, significant inter-
phase transfer exists in most relevant situations in two-phase flow, and eigen-structure of the two-fluid 
model is certainly not very important in such cases. 
 
 
4.2 Critical flow in convergent-divergent nozzle 
 
   This section presents results obtained for two-phase flashing flow in a convergent-divergent 
nozzle of cross-section (Anderson, 1995): 
 

2)5.1(*2.2.1)( −+= xxA ,      .30 mx ≤≤  (22) 
 
Nozzle is shown in Fig. 3. The calculations have been performed with WAHA code and with 
RELAP5/MOD3 code. Wall friction was switched of in all WAHA and RELAP5 simulations. 
RELAP5 is based on six-equation two-fluid model, but due to the numerical limitations cannot 
perform simulations of two-phase critical flow directly with six-equation two-fluid model, and is 
using special "choking" models for critical flow simulations. In the present work RELAP5 was used 
without special model ("choking" was disabled) and the flow was simulated as homogeneous 
equilibrium, i.e. HEM model in RELAP5 was used (simple home-made HEM code used in the 
previous shock-tube section was not used in this section because it does not allow area changes).  
   WAHA code was not intended to be used for direct modeling of two-phase critical flows (most of 
the water hammer's are low velocity phenomena), however it can simulate such transient. Simulation 
was performed with instantaneous relaxation of inter-phase heat, mass, and momentum transfer. The 
following boundary conditions were used: 
- inlet: p=2 bar, T=392.9 K, 0=α  
- outlet: p=1 bar 
Initial conditions were: vf=vg=0 and 0=α , transient was running until the steady state critical flow 
was reached. Nozzle was discretized in 51 cells. Due to the single-phase liquid and slight subcooling 
(0.5 K) at the inlet, the steady-state flow is single phase in the first part of the pipe and flashing 
appears before the nozzle throat. Figure 4 shows the pressure profiles in the nozzle, Fig. 5 vapor 
volume fraction profiles, and Fig. 6 shows mass flow rate profiles.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Nozzle cross-section                   Fig. 4: Steady-state pressure profile in the nozzle. 
 
   One could expect higher critical flow rate predicted by two-fluid model that by HEM model, 
because the sonic velocity of the two-fluid model is larger than the sonic velocity of the HEM model. 
However, like in the previous section, very similar results are obtained with HEM model from 
RELAP5 and WAHA code with instantaneous relaxation. The fact is that WAHA code does not know 
anything about the HEM sound velocity - it's eigenvalues are different than eigenvalues of the HEM 
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model, but the present results show that the flow becomes "choked" approximately when mixture 
velocity exceeds the local HEM speed of sound. If we define choking as a point where the mixture 
velocity exceeds the local speed of sound, then the WAHA flow is not choked at all, because the 
mixture velocity never exceeds the sonic velocity of the two-fluid model. However, the flow is 
choked if we define choking as a flow rate, which does not depend on the downstream pressure. This 
is shown in Fig. 7 where mixture velocities calculated with RELAP5-HEM are compared with results 
of WAHA with instantaneous relaxation ("quasi-HEM" WAHA). Fig. 7 shows also local HEM speed 
of sound calculated by RELAP5 HEM, and speed of sound of the WAHA calculation. Mixture 
velocities never exceed the two-fluid speed of sound, but do exceed the HEM speed of sound.  
   Figs. 6 and 8 show the non-negligible rate of mass non-conservation in WAHA code for the 
problem with flashing flow in the nozzle: maximal mass error is 4% in Fig. 6 and 12% in Fig. 8 (case 
WAHA CORR.). Nozzle flow calculated with WAHA correlations (WAHA CORR. case in Fig. 8) is 
not perfectly steady but is fluctuating in time. If temporal average of the mass flow rate profile is 
calculated, the maximal mass error is approximately 5%. However, non-conservation of mass (energy 
and momentum) in the nozzle is still at least an order of magnitude higher than non-conservation in 
typical water hammer problems. 
    
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Vapor volume fraction profile.           Fig. 6: Mass flow rate profile. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Mixture velocity profiles, HEM speed of    Fig. 8: Mass flow rate profiles: WAHA CORR.  
sound, two-fluid model speed of sound.           profile obtained with WAHA code and built-in 
                                           correlations.  
 
   It is interesting to add that critical flow predicted with built in WAHA correlations, is roughly two 
times larger that the HEM critical flow of RELAP5 and "quasi-HEM" critical flow from WAHA code 
(Fig. 8). As the WAHA correlations for inter-phase heat, mass, and momentum transport are not fixed 
yet, "WAHA CORR." profile in Fig. 8 should be taken as preliminary result. 
   Similar study with variation of the inter-phase exchange coefficients, like in the shock tube case, 
would be possible with nozzle case too, however, the simulation would fail at low inter-phase fricton 
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coefficients, due to the very high relative velocities, where equations of the two-fluid model become 
non-hyperbolic. 
   Like the shock tube problem, the critical flow case again diminishes the role of the eigenvalues of 
the two-fluid model and shows a significant influence of the relaxation source terms (inter-phase 
exchange source terms) on the propagation velocities of the system. 
 
 
5.  CONCLUSIONS 
 
   The present work describes the relation between the eigenvalues of the hyperbolic six-equation 
two-fluid modes and relaxation source terms that describe inter-phase exchange of mass, momentum 
and energy. Results show that solutions of the applied six-equation two-fluid model tend to the 
solutions of the three-equation homogeneous-equilibrium model as the strength (stiffness) of the 
relaxation source terms is increased. It is well known that the inter-phase exchange source terms can 
be stiff. i.e. their characteristic time scale can be very short, much shorter than the characteristic time 
scale of the acoustic waves. This stiffness is responsible for the influence of the relaxation source 
terms on the propagation velocities of the two-fluid models. 
   These findings should be taken into account in the field of numerical schemes for two-fluid models, 
where probably too much attention has been devoted to the accurate evaluation of the eigen-structure of 
the two-fluid models in the past. Schemes, which do not depend on the exact eigen-structure (AUSM 
schemes for example - see Paillere 2002 for example), might be found as sufficiently accurate for 
simulations of two-phase flows. 
 
 
NOMENCLATURE 
 
p     pressure (Pa) 
α     vapor volume fraction (m3/m3) 
v     velocity (m/s) 
u     specific internal energy (J/kg) 
e     specific total energy (J/kg) 
ρ    density (kg/m3) 
s     specific entropy (J/kg K) 
T     temperature (K) 
Γg   vapor source term (kg/s/m3)  
Cvm   virtual mass coefficient. 
CVM  virtual mass term  
Ci   inter-phase drag coefficient (kg/m4) 
vi    velocity of the interface 
θ    inclination of the pipe  
h    specific internal enthalpy (J/kg) 
Hi   heat transfer coefficient (W/m3/K) 
Qif, Qig heat fluxes from interface to phase f or g  
A    pipe cross-section (m2) 
pi    interfacial pressure 
E    pipe elasticity module 
D    pipe diameter 
d    pipe wall thickness 
S    stratification factor 
 
Vectors and matrices: 
A  matrix - temporal derivatives 
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B  matrix - spatial derivatives 
S  vector - sources 
ψ  independent variables 
Λ   eigenvalues matrix 
L   eigenvectors matrix 
 
Subscripts 
f liquid 
g vapor 
m mixture 
s saturation 
i interface 
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