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ABSTRACT
Code for analysis of the water hammer in thermal-hydraulic

systems is being developed within the WAHALoads project
founded by the European Commission [1]. Code will be
specialized for the simulations of the two-phase water hammer
phenomena with the two-fluid model of two-phase flow. The
proposed numerical scheme is a two-step second-order accurate
scheme with operator splitting; i.e. convection and sources are
treated separately. Operator splitting technique is a very simple
and “easy-to-use” tool, however, when the source terms are
stiff, operator splitting method becomes a source of a specific
non-accuracy, which behaves as a numerical diffusion. This
type of error is analyzed in the present paper.

NOMENCLATURE
A,B coefficient matrices Subscripts/Superscripts
C Jacobian matrix f luid
L transformation matrix g as
M transformation matrix
p pressure Greek letters
S source term α void fraction
t time ρ density
u specific internal energy ϕ conservative variables
v velocity ψ rimitive variables
x spatial coordinate ξ haracteristic variables
w total energy Λ igenvalue matrix

φ imiter function
θ lope detector

INTRODUCTION
Appearance of water hammer in thermal-hydraulic systems

was widely studied in the past. Nevertheless, the modeling of
the water hammer transients, which include the two-phase flows

phenomena, remains a challenge. One of the codes that are used
today for simulations of two-phase water hammer phenomena is
RELAP5 [4] (similar codes are CATHARE and TRAC), which
was developed for simulations of the transients in the nuclear
power plant systems. However, these codes are verified for
certain spectra of transients, which do not include water-
hammer transients. Some attempts to examine the RELAP5 and
CATHARE behavior for one of the water hammer scenarios are
described in [3] and [5]. Beside the deficiencies of the physical
models, results of both codes suffer due to the obsolete first-
order accurate numerical schemes.

As a consequence, one of major goals of ongoing WAHA
Loads project (founded by the European Commission [1]) is
development of a new computer code, which would be
specialized for the simulations of the two-phase flow water
hammer phenomena. The basic mathematical model is similar
to the mathematical model of the computer codes RELAP and
CATHARE, i.e. one-dimensional, 6-equation two-fluid model.
These two-fluid models assume the same pressure for both
phases and separate continuity, momentum and energy balances
for vapor and liquid phase.

Beside the 6-equation two-fluid model of RELAP5 code,
we tested also a 7-equation two-fluid model proposed by Saurel
and Abgrall [6]. Saurel and Abgrall proposed a two-pressure
instead of a single-pressure two-fluid model. Because of the
different phasic pressures, their model contains 7 partial
differential equations. Furthermore, we performed some tests also
with the simplest two-phase flow model: 3-equation
Homogeneous-Equilibrium Model (HEM).

In all cases mentioned above the equations of the two-fluid
models and equations of the HEM model can be written in
vector form as
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where vector ψv stands for:

• )( ρραψ gfgf ,,v,v,p,=
r

for 6-eq. model taken from

RELAP5of Saurel and Abgrall [6],
• ,,v,v,p,p,= gfgfgf )( ρραψ

r
for 7-eq. model of Saurel

and Abgrall [6],
• )( ρψ v,,p=

r
for 3-eq. HEM model.

Detailed form of the equations with all the differential terms
that contribute to the matrices A and B, and with the non-
differential source terms that contribute to the source term S can
be found in [2] and [6].

In the present work the most important part of the source
term vectors comes from the inter-phase friction and inter-phase
exchange of mass and energy. We will not go into the details of
the physical models for the inter-phase exchange, but it should
be stressed that these models contribute a significant amount of
uncertainty into the two-fluid models. Inter-phase exchange
terms are actually based on empirical correlations, which
depend on the regime of the two-phase flow. An overview of
such a set of correlations is given in [2], while a detailed
discussion is given in [4].

The numerical scheme applied in the test codes, described in
this paper, is based on the Godunov methods, i.e. high-
resolution shock-capturing methods. In order to use such
numerical schemes the system equation (1) must be hyperbolic.
This is not always the case for two-fluid models; for example, the
hyperbolicity of the RELAP5 6-equation models must be ensured
with appropriate form of the additional differential terms for
virtual mass and/or interfacial pressure (see [2] for details on
RELAP5 6-eq. model). Other two models, 7-equation model of
Saurel and Abgrall and 3-equation HEM, are unconditionally
hyperbolic.

NUMERICAL SCHEME
Further described numerical scheme was applied for all two-

phase flow models. The proposed numerical scheme is a two-step
scheme with operator splitting; i.e. convection and sources in Eq.
(1) are treated separately:
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Second-order accuracy can be achieved with Strang splitting
[7]. One time step includes the following three substeps
(superscripts n, n+1 denote time levels and *,** denote
intermediate time levels):

1.) integration of the sources - Eq. (3) - over half of the time step:
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2.) convection - Eq. (2):
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3.) integration of the sources - second half of the time step:
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Each of the substeps is solved with the second-order accurate
methods described below.

Convection terms
Equation (2) multiplied by A-1 from the left gives
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x
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rr (7)

where C = A-1B is the Jacobian matrix. The matrix C can be
diagonalised as

LL=C -1Λ (8)

where Λ is a diagonal matrix of eigenvalues and L is a matrix of
eigenvectors of the matrix C. The diagonalization (8) of the
matrix C is not always straightforward, as the eigenvalues and
eigenvectors may contain very long and complicated algebraic
expressions (e.g. in [2]). An advantage of the Saurel-Abgrall's 7-
eq. two-fluid model [6] over the RELAP5 6-eq. model [2-4] is
much simpler structure of eigenvalues and eigenvectors, and
unconditional hyperbolicity of the equations. For 6-equation
RELAP5 model the decomposition of the Jacobian matrix (8) has
been performed with analytical approximations for moderate
interphase relative velocities ( vr < 20m/s ), and numerically for
larger vr. The test codes and the proposed numerical scheme work
only for problems with real eigenvalues of the Jacobian matrix.
The calculation is interrupted if complex eigenvalues are found
and equations become non-hyperbolic.

Characteristic variables are introduced as

,L= -1 ψδξδ
rr

(9)

where δξ represents an arbitrary variation: ∂ξ/∂t or ∂ξ/∂x. The
characteristic form of the Eq. (2)
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presents a basis for the second-order accurate numerical schemes.
Problems of the pure second-order accurate discretization (e.g.

Lax-Wendroff) are oscillations, which appear in the vicinity of the
nonsmooth solutions. The problem is solved (LeVeque, [7]), if a
combination of the first and second-order accurate discretizations
is used. Part of the second-order discretization is determined by
the limiters, which "measure" the smoothness of the solutions. If
the solutions are smooth, larger part of the second-order
discretization is used; otherwise larger part of the first-order
discretization is used. In the developed code an improved
characteristic upwind discretization of the Eq. (10) was used as a
first-order discretization (Hirsch, [8]) and the Lax-Wendroff
scheme as a second-order discretization.

Combination of the first and the second-order accurate
discretizations of the Eq. (10) is
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Elements of the diagonal matrices ΛΛ --++ , are calculated as:
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with K equal to the number of the partial differential equations,
i.e. K = 3 (HEM), K = 6 (RELAP5 model) and K = 7 (Saurel-
Abgrall's model). The flux limiter φk is calculated using one of the
following limiters [7]:

MINMOD: ,,m,= kk ))1in(0max( θφ

Van Leer: )1()( +θθ+θ=φ kkkk / ,

Superbee: ))2min(),12min(0max( ,θ,θ, kkk =φ

(14)

where θk measures the ratio of the left and the right gradients in
the grid point j+1/2:
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The steepest waves are obtained with Superbee limiter, while the
most smeared waves (but still second-order accurate) are obtained
with MINMOD limiter. Solutions obtained with Van Leer limiter,
which was used in the present paper, lie between the solutions

obtained with MINMOD and Superbee limiters (see LeVeque, [7]
for details on limiters).

If Eq. (11) is transformed back into the basic variables, we
obtain a finite difference scheme that was used in the test codes
for the convective part of the Eq. (1):
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with
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The stability domain for the integration of the convective terms is
limited by the CFL (Courant-Friedrichs-Levy) condition:

.K,=j,||x/t k 1)max( λ∆≤∆ (18)

A specific problem of the second-order accurate schemes in
two-phase flow is degeneration of the eigenvectors as relative
interphase velocity approaches zero. Only five linearly
independent eigenvectors exist in that case. The problem remains
solvable, if a small artificial relative velocity |vr |=10-9m/s is
maintained [2].

In the test codes a simple average of the non-conservative
variables was used for the evaluation of the Jacobian matrix at the
point j+1/2:

]2)([ 121 /C=C +jj/+j ψ+ψ
rr

(19)

A similar approach has been taken by Gallouet and Masella [9],
who showed that this type of averaging had given surprisingly
good results for Euler equations. They emphasized that the
averaging (19) must be performed with primitive variables
(pressures, velocities, and densities). Toumi and Kumbaro
proposed in [10] another, more complicated and possibly more
accurate alternative, which was not adopted in the present work.
They attempted to evaluate the Roe approximate Riemann solver
[11] for the six-equation Jacobian matrix Cj+1/2 and proposed a
complicated procedure for the evaluation of the Jacobian matrix
between the grid points from the left and right states, j and j+1,
respectively.

The following paragraph gives a brief discussion on the
choice of the basic variables, i.e. components of the vector ψ in
Eq. (1). Numerous tests were performed with 6-eq. model
(described in [2]) with different basic variables and the most
successful set of variables turned out to be ψ = ( p,α,vf,vg,uf,ug ).
This set of variables is very close to the so-called primitive
variables, where the phasic internal energies uf, ug should be
replaced with phasic densities ρf, ρg. However, internal energies
were retained due to the applied water property subroutines. The
preferred set of variables would be conservative variables:
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])1()1()1[( w,w-,v,v-,,- ggffggffgf ραραραραραρα=ψ
r . (20)

Due to the specific problems of the conservative variables, which
are described in [2] and [12], they were not applied in the present
case. According to the our experience, non-conservative variables
present an acceptable approximation for fast transients while for
the long transients, where conservation of mass and energy is very
important, this might be a serious drawback. In the test
calculations presented in [2] and [3] negligible fluctuations of the
overall mass and energy have been observed despite the non-
conservative scheme.

Integration of the source terms
The form of the source term is very important for the behavior

of the equations. Sources for the inter-phase exchange of mass,
momentum and energy in the system of equations for steam-water
mixture are stiff, i.e. their characteristic time scale can be much
lower that the time step from the CFL condition (18). Integration
of the sources in Eqs. (4) and (6) is thus performed with the
explicit second-order accurate Euler method, which allows
variations of the time step:
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The time step ∆ts for the integration of the source terms is not
constant and is controlled by the relative change of the basic
variables. The maximal relative change of the basic variables in
one step of the integration is currently set to 0.001. Source terms
describing inter-phase exchange are weak when the two-phase
mixture is close to the thermal and mechanical equilibrium. In
that case the time step for their integration ∆ts is equal to the
convection time step ∆t. When the mixture is far from
equilibrium, the source term integration time steps ∆ts can be a
few orders of magnitude shorter that ∆t. As a consequence a few
hundred sub-steps can be required to integrate the sources over a
single convection time step ∆t. Numerical scheme described by
Eqs. (4-6) produces a specific error, which appears as a result of
the operator splitting scheme applied for the equations with stiff
source terms. This type of error is described and discussed in the
next section.

ACCURACY OF THE OPERATOR SPLITTING FOR
STIFF SOURCE TERMS

Operator splitting as shown in Eqs. (4-6) is a very simple
and "easy-to-use" tool, however, it can also be a source of a
specific non-accuracy, which is analyzed in this section. It can
be easily analyzed with the test case, which simulates the
Simpson's water hammer experiment [13], where liquid water
flows from the large tank through the horizontal pipe (Fig. 1).
At time zero the valve, which is located 36 meters away from
the tank, is instantaneously closed. A pressure wave is created.
If the initial conditions are appropriate, the cavitation starts near

the valve approximately at time 0.05 seconds, when the wave,
reflected from the tank, hits the valve (also see results of the
simulation in [3]).

Water tank - constant
pressure boundary condition

L=36 m

v0=0.4 m/s valve
p0=1 MPa

T=436 K

Figure 1: Scheme of the Simpson's water-hammer experiment
with initial and boundary conditions. The transient is initiated by
a rapid closure of the valve.

The results of the Saurel-Abgrall's 7-eq. model [5] are
compared with 3-eq. HEM and the single-pressure 6-eq. two-
fluid model used in our previous works [2,3]. Results of the 6-
eq. and 7-eq. models are obtained with instantaneous relaxation
of velocities, pressures (only for 7-eq. model) and temperatures.
In other words, infinitely fast heat, mass, and momentum
transfer was assumed - inter-phase exchange sources are thus
infinitely stiff. For the Saurel-Abgrall's two-pressure 7-Eq.
models infinitely fast relaxation of pressures is assumed too. We
are aware that there are no infinitely stiff sources in the real
world, however, such test presents a very useful limiting and
demanding test for the numerical schemes.

Our assumption is that due to the instantaneous relaxation
the results of 6-eq. and 7-eq. models should be equal to the 3-
eq. HEM. The Figs. 2-4 show the results of the Simpson's
water-hammer transient calculated with the Saurel-Abgrall's 7-
eq. two-fluid model [6], the 6-eq. two-fluid model (RELAP5,
[2-4]) and the 3-eq. HEM. Fig. 2 gives the vapor volume
fraction in the point, where the cavitation occurs, i.e. near the
valve and Fig. 3 gives the pressure in the same point. Figure 4
shows the total volume of vapor in the pipe during the transient,
which is very similar in all three models. It should be stressed
that all three calculations were done on 100 grid points with the
same time step and with the same numerical scheme, which is
described in this report (i.e. Van Leer limiters, Strang operator
splitting, no wall-friction).
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Figure 2: Comparison of the 3-eq.-HEM, 6-eq. and 7-eq.
models: temporal development of the vapor volume fraction at
the point where the cavitation starts - i.e. near the valve.
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Figure 3: Comparison of the 3-eq. HEM, 6-eq. and 7-eq.
models: pressure history near the valve.

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.05 0.1 0.15 0.2 0.25 0.3

time (s)

to
ta

lv
o

id
in

th
e

p
ip

e
(n

o
rm

al
iz

ed
)

7-EQ

6-EQ

HEM

Figure 4: Total volume of vapor created in the pipe predicted
by the 3-eq. HEM, 6-eq. and 7-eq. models.
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Figure 5: Comparison of the 3-eq. HEM, 6-eq. and 7-eq.
models: temporal development of the vapor volume fraction in
the point where the cavitation starts - the same grid but different
time steps.
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Figure 6: Comparison of the 3-eq. HEM, 6-eq. and 7-eq.
models: pressure history near the valve.

The conclusion of the Figs. 2-4 is that the spatial vapor
profile in the pipe is more smeared for the 6-eq. model than for
the 3-eq. model and is even more smeared in the 7-eq. model,
despite the same amount of the numerical diffusion in all three
models. This seems to be against assumption that the results of
all models should be equal.

The 6-eq. and 7-eq. simulations were then repeated, but this
time with decreased time step:

• 3-eq. HEM (on 100 cells with dt =0.9 CFL)
• 6-eq. two-fluid model (on 100 cells with dt=0.9CFL/10 -

ten times shorter time step)
• 7-eq. two-fluid model (on 100 cells with dt=0.9CFL/20 -

twenty times shorter time step)

Results with the reduced time step are shown in Figs. 5 and 6.
These results are very similar and show that the 3-eq. HEM is
really a limit of the 6-eq. and 7-eq. models.
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The differences seen in Figs. 2 and 3 stem from Strang
operator splitting, which is not sufficiently accurate for
simulations with infinitely fast inter-phase exchange of mass,
momentum, and energy. Therefore, shorter time steps mean
more accurate time integration, especially the operator splitting.
The 7-eq. model is more sensitive to that non-accuracy than the
6-eq. model because there is one more pair of variables to relax:
pressures.

Search of the existing literature shows two papers that are
dealing with the inaccuracy of the Strang operator splitting
when stiff source terms are present [14, 15]. Both works are
from the area of particle-gas two-phase flow during the rocket
fuel combustion. References [14] and [15] discuss the problem
of solving the system of hyperbolic equations of the same form
as Eq. (1), where some of the equations can be written as:

ε
ϕ−ϕ=

∂
ϕ∂+

∂
ϕ∂ *

x
C

t

(22)

where superscript * denotes the equilibrium (thermal or
mechanical) value of the parameter ϕ and ε denotes the
characteristic time of relaxation. A relaxation time is a time
period in which the relaxation quantity approaches to its
equilibrium value. Numerical solution of the Eq. (22) obtained
with operator splitting method converges toward the solution of
the differential equation (21) as ∆x→0, ∆t→0 and when
condition ∆t/ε →0 (which is often not respected in two-fluid
codes) is fulfilled. It is clear that the problems appear for small
values of relaxation time ε.

Up to 4 non-equilibrium (relaxation variables) can be
present in the two-phase water system; each of them has its own
characteristic relaxation time:
1) Different phasic pressures: exact relaxation time unknown -

known to be very short.
2) Vapor temperature not in saturation - relaxation times very

short in most of the flow regimes.
3) Liquid temperature not in equilibrium - relaxation time not

negligible.
4) Mechanical non-equilibrium: different phasic velocities -

relaxation time not negligible.

The Saurel-Abgrall's 7-eq. model [6] can describe all four types
of non-equilibrium, whereas the 6-eq. model. (RELAP5, [2-4])
model describes non-equilibrium no. 2, 3, 4. The 5-eq. model is
sufficient to describe non-equilibrium no. 3 and 4, whereas the
simplest 3-eq. HEM cannot describe any kind of non-
equilibrium.

From the physical point of view more equations describe the
system more accurately. However, as shown in Figs. 2-6, each
type of non-equilibrium causes a numerical error, which
behaves like numerical diffusion when the relaxation time is
very short.

Because of the numerical non-accuracy of the operator
splitting method, it is better to use two-fluid model with less

equations for very short relaxation times (i. e. if all relaxation
times are very short 3-eq. model will be the optimal one). On
the other side, relaxation times must be estimated from existing
physical models for different types of non-equilibrium. First
estimates show that extremely short relaxation times are seldom
encountered.

Deficiency of the operator splitting method described in the
present paper is seen as an additional numerical diffusion when
extremely short relaxation times appear in the equations. With
special transformation of the equations and with appropriate
numerical schemes described in [14] and [15] this deficiency of
the operator splitting method can be avoided. However, due to
their complexity, the approaches from [14] and [15] will not be
applied in the code that is being developed within the
WAHALoads project.

Note: The results in Figs 2-6 are not grid independent (this
does not change the conclusions above): In Fig. 7 it can be seen
that the void fraction is very sensitive to the number of grid
points. It is because the two-phase area appears only near the
valve (if all vapor would be in a single bubble, this bubble
would be 5 cm long - much shorter than a single cell length). At
least 1000 grid points are required for grid independent results.
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Figure 7: Grid refinement study performed with the 3-eq. HEM
model: vapor volume fraction near the valve.
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Figure 8: Grid refinement study performed with the 3-eq.-HEM
model: pressure history near the valve.
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CONCLUSIONS
This document paper gives an overview of the numerical

method, which is used in the numerical code, which is being
developed for the simulations of the two-phase water hammer
transients. The proposed numerical scheme is a two-step scheme
with operator splitting; i.e. convection and sources are treated
separately with second-order accurate schemes. Operator
splitting technique is successful for source terms of the
moderate strength, while it becomes a source of a specific non-
accuracy, when the relaxation times are decreased and the
source terms become stiff. As shown in the present work, this
non-accuracy of the operator splitting method is manifested as a
numerical diffusion and can be partially avoided with shorter
time step.
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