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1 Introduction

Goal of the Workpackage 2 (WP2) of the WAHALoads project (ref. [1]) is development of
the new computer code named WAHA specialised for the simulations of the two-phase flow
water hammer phenomena. This documents describes the numerical scheme, which is planned
to be used in the WAHA code. Work within the WP2 is currently divided into three main
tasks:

1) development of the physical model for the WAHA code,
2) testing of different numerical schemes for fast transients in two-phase flow with separate

"test codes",
3) development of the first version of the WAHA code.

The first task is being performed mainly by Universite catholique de Louvain (UCL) and
CEA Grenoble, while the second and third tasks are mainly performed by Institute "Jožef
Stefan" (IJS). A separate deliverable D60 (see description of work in [1]) is planned after the
first year of the project for the first task, deliverable D63 [15] describing the current status of
the code development is planned after the first year for the third task. The present document,
i.e. deliverable D62 describes the numerical scheme, which is used in the first version of the
WAHA code [15] and is planned to be used in the future versions of the WAHA code.

IJS experience with numerical schemes for two-phase flow modelling are based on simple
anduser-unfriendly test codes, which were developed for simulations of different two-phase
flow transients in the past years [2,3]. These test programs are not useful for potential users of
WAHA code, however, they are very suitable for testing of different numerical approaches.
The main goal of the research in the first year of the WAHALoads project was accurate and
efficient treatment of the stiff source terms, i.e. algebraic terms that describe the inter-phase
exchange of mass, momentum and energy.

The numerical scheme described in this document is according to our knowledge and
expertise the optimal scheme for the simulation of the fast transients in two-phase flow,
however we will try to remain open for possible improvements of the scheme.

2 Numerical scheme

Previous IJS experience with numerical schemes for two-phase flows are summarised in
references [2] and [3]. The test programs from [2] and [3] were developed for solving RELAP5
6-equation single-pressure two-fluid model [4]. In the first year of the project we tested also a 7-
equation two-fluid model proposed by Saurel and Abgrall [5]. Saurel and Abgrall proposed a
two-pressure instead of a single-pressure two-fluid model. Because of the different phasic
pressures their model contains 7 partial differential equations. Some tests were performed also
with the simplest two-phase flow model: 3-equation homogeneous-equilibrium model (HEM).

The same numerical scheme was applied for all two-phase flow models. It is based on the
Godunov methods, i.e. high-resolution shock-capturing methods, which are widely used in
aerodynamics. No matter whether we are talking about RELAP5 6-equation model, 7-equation
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model of Saurel and Abgrall or 3-equation HEM model, the system of equations can always be
written in the following form:

,S=
x

B+
t

A
rrr

∂
∂

∂
∂ ψψ

(1)

whereψr represents the vector of independent variables (for example, in RELAP5 6-eq. model

one can choose )u,u,v,v,p,(= gfgfαψr ) , A and B are system matrices andS
r

is a vector

with nondifferential terms in the equations. Dimension of the vectorsψr and S
r

as well as

matricesA and B is equal to the number of partial differential equations used, i.e: 6 - for 6-eq.
model, 7 - for 7-eq. model. In order to use the numerical schemes described in this report, the
system of equations (1) must be hyperbolic. This is not always the case for two-fluid models;
however, the hyperbolicity can usually be ensured with appropriate form of the additional
differential terms for virtual mass and/or interfacial pressure (6-eq. model of RELAP5 code is
such example, see [2] for details). It should be noted that the Saurel-Abgrall's 7-eq. model and
HEM 3-eq. model are unconditionally hyperbolic.

The proposed numerical scheme is a two-step scheme with operator splitting; i.e. convection
and sources in Eq. (1) are treated separately:

,0=
x

B+
t

A
∂
∂

∂
∂ ψψ rr

(2)

,S=
dt

d
A

rrψ
(3)

Second-order accuracy can be achieved with Strang splitting [6]. One time step includes the
following three substeps (superscripts 1+n,n denote time levels - *,** denote intermediate
time levels):

1) - integration of the sources - Eq. (3) - over half of the time step:

dt(t))(S)(A+= jj
1-

t/2+tn

tn

n
j

*
j ψψψψ rrrrr

∫
∆

(4)

2) - convection - Eq. (2):
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ψψψ
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3) - integration of the sources - second half of the time step:

dt(t))(S)(A+= jj
1-

t/2+t **

t **

**
j

1+n
j ψψψψ rrrrr

∫
∆

(6)

Each of the substeps is solved with the second-order accurate method described below.
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2.1 Convection terms

Equation (2) multiplied byA-1 from the left gives

.0=
x

C+
t ∂

∂
∂
∂ ψψ rr

(7)

BA=C -1 is the Jacobian matrix, which can be diagonalised as

LL=C -1Λ (8)

where diagonal matrixΛ is matrix of eigenvalues andL is matrix of eigenvectors of the matrix

C . The diagonalization (8) of the matrixC is not always straightforward, as the eigenvalues
and eigenvectors may contain very long algebraic expressions (for example eigenvalues of
RELAP5 6-eq. model described in [2] contain very long and complicated expressions).
Decomposition of the Jacobian matrix (8) in [2] has been performed with analytical
approximations for moderate interphase relative velocities (20m/s<vr ), and numerically for
larger vr . The test codes and the proposed numerical scheme work only for problems with real
eigenvalues of the Jacobian matrix. The calculation is interrupted if complex eigenvalues are
found and equations become non-hyperbolic. An advantage of the Saurel-Abgrall's 7-eq. two-
fluid model [5] over the RELAP5 6-eq. model [2-4] is much simpler structure of eigenvalues
and eigenvectors and uncoditionall hyperbolicity of the equations.

Characteristic variables are introduced as

,L= -1 ψδξδ rr
(9)

where ξδ
r

represents an arbitrary variation: t/∂∂ξ
r

or x/∂∂ξ
r

. The characteristic form of the Eq.
(2)

.0=
x

+
t ∂

∂Λ
∂
∂ ξξ

rr

(10)

presents a basis for the second-order accurate numerical schemes.

Problems of the pure second-order accurate discretization - Lax-Wendroff for example - are
oscillations, which appear in the vicinity of the nonsmooth solutions. The problem is solved
(Leveque, [6]) if a combination of the first and second-order accurate discretizations is used.
Part of the second-order discretization is determined by the limiters, which "measure" the
smoothness of the solutions. If the solutions are smooth, larger part of the second-order
discretization is used, otherwise larger part of the first-order discretization is used. An improved
characteristic upwind discretization of the Eq. (10) was used as a first-order discretization
(Hirsch, [7]).
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Combination of the first and second-order accurate discretizations of the Eq. (10) is [2,3]:
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Elements of the diagonal matrices ΛΛ --++ , are calculated as:
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with K equal to the number of the partial differential equations, i.e. K=3 (HEM), K=6 (RELAP5
model), K=7 (Saurel-Abgrall's model).

The flux limiter φk is calculated using one of the following limiters [6]:

MINMOD: ,K1,=k,)),(1,(0= kk θφ minmax (14)

Van Leer: )1/()( ++= kkkk θθθφ ,

Superbee: ))2,min(),1,2min(,0max( kkk θθφ =

whereθ k measures the ratio of the left and the right gradients in the grid point1/2+j :
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||

=m,
-

-
=

1/2+jk,

1/2+jk,

jk,1+jk,

m-jk,m-1+jk,
1/2+jk,

λ
λ

ξξ
ξξ

θ (15)

The steepest waves are obtained with Superbee limiter, while the most smeared waves (but still
second-order accurate) are obtained with MINMOD limiter. Solutions obtained with Van Leer
limiter lie between the solutions obtained with MINMOD and Superbee limiters (see LeVeque,
[6] for details on limiters). First-order accurate characteristic upwind scheme is obtained if the
values of the limiters (14) are set to zero.

If Eq. (11) is transformed back into the basic variables, we obtain a difference scheme that is
used in the test codes for the convective part of the Eq. (1):
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with
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--
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++
1/2-j1/2-j

++
1/2-j ΛΛ (17)
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The stability domain for the integration of the convective terms is limited by the CFL (Courant-
Friedrichs-Levy) condition:

.K1,=j,|)(|x/t kλmax∆≤∆ (19)

A specific problem of the application of the second-order accurate schemes in two-phase flow is
degeneration of the eigenvectors as relative interphase velocity approaches zero. Only five
linearly independent eigenvectors exist in that case. The problem remains solvable, if a small
artificial m/s10|=v| -9

r is maintained [2].

2.2 Averaging of the Jacobian matrix C 1/2+j between the grid points

In the test codes a simple average of the non-conservative variables was used for the evaluation
of the Jacobian matrix at the point 1/2+j :

)/2]+[(C=C 1+jj1/2+j ψψ rr
(18)

A similar approach has been taken by Gallouet and Masella [8], who showed that this type of
averaging had given surprisingly good results for Euler equations. They emphasized that the
averaging (18) must be performed with primitive variables (pressures, velocities, densities).
Another more complicated and possibly more accurate alternative proposed by Toumi and
Kumbaro in [9] was not adopted in the present work. They attempted to evaluate the Roe
approximate Riemann solver [10] for the six-equation Jacobian matrixC 1/2+j and proposed a

complicated procedure for the evaluation of the Jacobian matrix between the grid points from
the left and right statesj and 1+j .

2.3 Choice of variables - components of vector ψr

Section 2.3 gives a brief discussion on the choice of the basic variables, i.e. components of the
vectorψr in Eq. (1). Numerous tests were performed with 6-eq. model (described in [2]) with
different basic variables and the most successful set of variables turned out to be

)u,u,v,v,p,(= gfgfαψr . This set of variables is very close to the so-called primitive

variables, where the phasic internal energiesu,u gf should be replaced with phasic densities

ρρ gf , , however internal energies were retained due to the applied water property subroutines.

The prefered set of variables were conservative variables:
],[ w,w)-(1v,v)-(1,,)-(1 ggffggffgf ραραραραραραψ =

r
with specific total energies

2/2vuw += . Conservative form of equations usually means also numerical conservation of
mass, momentum and energy, however there are some specific problems with conservative
formulation of multi-fluid two-phase flows:

1) The continuity and energy equations can be written in the conservative form, while the
fluxes for the momentum equations do not exist due to the pressure gradient terms and
virtual mass terms. The momentum equations thus cannot be written in the conservative
(flux) form.
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2) Oscillations appear in the vicinity of particular discontinuities, if complex systems of
equations are solved with conservative variables (Tiselj, Petelin, [2]). Abgrall [11]
explained such oscillations for the four-equation model (two continuity, one momentum
and one energy equation). Oscillations do not depend on the numerical scheme accuracy
and can be observed in the results of first and second-order schemes.

3) New water properties subroutines are required that calculate two-phase properties
( ρρα gf ,,,p ) from the conservative variables ( u,u)-(1,,)-(1 ggffgf ραραραρα ).

Equations of the Saurel-Abgrall's 7-eq. model were solved only with non-conservative -
primitive variables: ),,v,vpp,(= gfgfgf ρραψ ,

r
, whereas 3-eq. HEM model equations

were solved with conservative and with primitive variables. Only in the case of the 3-eq. HEM
model the results of the conservative test code were better than results of the code with
primitive variables (the arguments 1) and 2) against conservative variables do not hold for the
3-eq. HEM model).

According to the our experience, non-conservative variables present an acceptable
approximation for fast transients while for the long transients, where conservation of mass and
energy is very important, this might be a serious drawback. In the test calculations presented in
[2] and [3] negligible fluctuations of the overall mass and energy have been observed despite
the non-conservative scheme.

An advantage of the conservative variables, which is not completely clear yet, is simpler and
more accurate treatment of the source terms due to the variable pipe cross-section. Mainly due
to that reason, our WAHA code ([15] - D63) is currently still open for both types of variables.

2.4 Integration of the source terms

The form of the source term is very important for the behaviour of the equations. Sources for
the inter-phase exchange of mass, momentum and energy in the system of equations for steam-
water mixture are stiff, i.e. their characteristic time scale can be much lower that the time step
from the CFL condition (19). Integration of the sources in Eqs. (4) and (6) is thus performed
with the explicit second-order accurate Euler method, which allows variations of the time step:

S
mm

S
mmm

tSA

tSA

∆+=

∆+=
−+

−

)()(

2/)()(

**11

1*

ψψψψ

ψψψψ
rrrrr

rrrrr

(20)

The time step St∆ for the integration of the source terms is not constant and is controlled by the

relative change of the basic variables. The maximal relative change of the basic variables in one
step of the integration is currently set to 0.001. Source terms describing inter-phase exchange
are weak when the two-phase mixture is close to the thermal and mechanical equilibrium. In
that case the time step for their integrationSt∆ is equal to the convection time stept∆ . When

the mixture is far from equilibrium, the source term integration time stepsSt∆ can be a few

orders of magnitude shorter thatt∆ . As a consequence a few hundred sub-steps can be required
to integrate the sources over a single convection time stept∆ . Numerical scheme described by
Eqs. (4), (5), (6) produces a specific error, which appears as a result of the operator splitting
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scheme applied for the equations with stiff source terms. This type of error is described and
discussed in the next section.

3 Accuracy of the operator splitting for stiff source terms

Operator splitting as shown in Eqs. (4)-(6) is a very simple and ""easy-to-use" tool, however,
it can also be a source of a specific non-accuracy, which is analysed in this section. It can be
easily analysed with the test case, which simulates the Simpson's water hammer experiment
[12], where liquid water flows from the large tank through the horizontal pipe. At time zero
the valve, which is located 36 meters away from the tank, is instantaneously closed. A
pressure wave is created. If the initial conditions are appropriate, the cavitation starts near the
valve approximately at time 0.05 seconds, when the wave, reflected from the tank, hits the
valve (see results of the simulation in [3]).

The results of Saurel-Abgrall's 7-eq. model [5] are compared with 3-eq. Homogeneous-
Equilibrium model (HEM) and the single-pressure 6-eq. two-fluid model used in our previous
works [2, 3]. Results of the 6-eq. and 7-eq. models are obtained with instantaneous relaxation
of velocities, pressures (only for 7-eq.), and temperatures. In other words: infinitely fast heat,
mass, and momentum transfer is assumed - inter-phase exchange sources are thus infinitely
stiff. Of course, there is no infinitely stiff source terms in the real world, however such test
presents a very useful limiting and demanding test of the numerical schemes.

Our assumption is that due to the instantaneous relaxation the results of 6-eq. and 7-eq.
models should be equal to the 3-eq. HEM model.

The Figures 1-3 show the results of the Simpson's water-hammer transient calculated with the
Saurel-Abgrall's 7-eq. two-fluid model [5], the 6-eq. two-fluid model (RELAP5, [2-4]) and
the 3-eq. HEM model. Fig. 1 gives the vapor volume fraction in the point, where the
cavitation occurs, i.e. near the valve and Fig. 2 gives the pressure in the same point. Figure 3
shows the total volume of vapor in the pipe during the transient, which is very similar in all
three models. It should be stressed that all three calculations were done on 100 grid points
with the same time step and with the same numerical scheme described in this report (i.e.:
Van Leer limiters, Strang operator splitting, no wall-friction ...).

The conclusion of the Figs. 1-3 is that the spatial vapor profile in the pipe is more smeared for
the 6-eq. model than for the 3-eq. model and is even more smeared in the 7-eq. model, despite
the same amount of the numerical diffusion in all three models. This seems to be against
assumption that the results of all models should be equal.

The 6-eq. and 7-eq. simulations were then repeated, but this time with decreased time step:

1) HEM-3-eq. model (on 100 cells with dt =0.9 CFL)
2) 6-eq. two-fluid model (on 100 cells with dt=0.9CFL/10 -10 times shorter time step)
3) 7-eq. two-fluid model (on 100 cells with dt=0.9CFL/20 -20 times shorter time step)

Results with the reduced time step are shown in Figs. 4 and 5. These results are very similar
and show that the HEM model is really a limit of the 6-eq. and 7-eq. models. The differences
seen in Figs. 1 and 2 stem from Strang operator splitting, which is not sufficiently accurate for
simulations with infinitely fast inter-phase exchange of mass, momentum, and energy.
Therefore, shorter time steps mean more accurate time integration - especially the operator
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splitting. The 7-Eq. model is more sensitive to that non-accuracy than the 6-Eqs. model
because there is one more pair of variables to relax: pressures.

Later, search of the existing literature showed two papers that are dealing with the inaccuracy
of the Strang operator splitting when stiff source terms are present [13, 14] from 1995 and
1996). Both works are from the area of particle-gas two-phase flow during the rocket fuel
combustion. References [13] and [14] discuss the problem of solving the system of hyperbolic
equations of the same form as Eq. (1), where some of the equations can be written as:

ε
ϕϕϕϕ *−=

∂
∂+

∂
∂

x
C

t
(21)

where superscript * denotes the equilibrium (thermal or mechanical) value of the parameter
ϕ and ε denotes the characteristic time of relaxation. A relaxation time is a time period in
which the relaxation quantity approaches to its equilibrium value. Numerical solution of the
Eq. (21) obtained with operator splitting method converges toward the solution of the

differential equation (21) as 0,0 →∆→∆ tx and when condition 0→∆
ε

t (which is often not

respected in two-fluid codes) is fulfilled. It is clear that the problems appear for small values
of relaxation timeε .

Up to 4 non-equilibrium (relaxation variables) can be present in the two-phase water system,
each of them has its own characteristic relaxation time:

1) Different phasic pressures: exact relaxation time unknown - known to be very short.
2) Vapor temperature not in saturation - relaxation times very short in most of the flow

regimes.
3) Liquid temperature not in equilibrium - relaxation time not negligible.
4) Mechanical non-equilibrium: different phasic velocities - relaxation time not negligible.

The Saurel-Abgrall's 7-eq. model [5] can describe all four types of non-equilibrium, whereas
the 6-eq. model. (RELAP5, [2-4]) model describes non-equilibrium no 2, 3, 4. The 5-eq.
model is sufficient to describe non-equilibrium no. 3 and 4, whereas the simplest 3-eq. HEM
model cannot describe any kind of non-equilibrium.

From the physical point of view more equations describe the system more accurately.
However, as shown in Figs. 1-5, each type of non-equilibrium causes a numerical error, which
behaves like numerical diffusion when the relaxation time is very short.

Because of the numerical non-accuracy of the operator splitting method, it is better to use
two-fluid model with less equations for very short relaxation times (i. e. if all relaxation times
are very short 3-eq. HEM model will be the optimal one). On the other side, relaxation times
must be estimated from existing physical models for different types of non-equilibrium. First
estimates show that extremely short relaxation times are seldom encountered.

Deficiency of the operator splitting method described in the section 3 of the present paper is
seen as an additional numerical diffusion when extremely short relaxation times appear in the
equations. With special transformation of the equations and with appropriate numerical
schemes described in [13] and [14] this deficiency of the operator splitting method can be
avoided. However, due to their complexity, the approaches from [13] and [14] will not be
applied in the WAHA code.
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Note: the results of Figs 1-5 are not grid independent (this does not change the conclusions
above): In Figs. 6 it can be seen that the void fraction is very sensitive to the number of grid
points. It is because the two-phase area appears only near the valve (if all vapor would be in a
single bubble, this bubble would be 5 cm long - much less than a single cell length). At least
1000 grid points are required for grid independent results.
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4 Conclusions

This document gives an overview of the numerical method, which is used in the current
version of the WAHA code [15] and is planned to be used in the final version of the WAHA
code. The described numerical scheme can be used with conservative, primitive, or with some
other sets of basic variables. The final choice of the basic variables depends on the
simulations of the smooth-area change flows that are currently tested.

Another undetermined choice is a number of the basic equations, which depends on the
chosen physical model. The most likely choice is the 6-eq. two-fluid model, however, if the
assumption of the thermal equilibrium of the vapor phase is adopted, the 5-eq. two-fluid
model will be used.

Some minor details that are not clarified in the present version of the document (for example:
treatment of very small vapor or liquid volume fractions) will be addressed in the next
versions of the document.
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Fig. 1: Comparison of the 3-eq.-HEM, 6-eq. and 7-eq. models: temporal development of the
vapor volume fraction at the point where the cavitation starts.

Fig. 2: Comparison of the 3-eq.-HEM, 6-eq. and 7-eq. models: pressure history.
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Fig. 3: Total volume of vapor created in the pipe predicted by the 3-eq., 6-eq. and 7-eq.
models.

Fig. 4: Comparison of the 3-eq.-HEM, 6-eq. and 7-eq. models: temporal development of the
vapor volume fraction in the point where the cavitation starts - the same grid but different
time steps.
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Fig. 5: Comparison of the 3-eq.-HEM, 6-eq. and 7-eq. models: pressure history.

Fig 6: Grid refinement study performed with the 3-eq.-HEM model.
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