
Influence of Obstacles on the Development
of Gravity Current Prior to Backdraft
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Abstract. The phenomenon of backdraft is closely linked to the formation of a flam-
mable region due to the mixing process between the unburned gases accumulated in

the compartment and the fresh air entering the compartment through a recently cre-
ated opening. The flow of incoming fresh air is called the gravity current. Gravity cur-
rent prior to backdraft has already been studied, Fleischmann (1993, Backdraft
phenomena, NIST-GCR-94-646. University of California, Berkeley) and Fleischmann

(1999, Numerical and experimental gravity currents related to backdrafts, Fire Safety
Journal); Weng et al. (2002, Exp Fluids 33:398–404), but all simulations and experi-
ments found in the current literature are systematically based on a perfectly regular

volume, usually parallelipedic in shape, without any piece of furniture or equipment in
the compartment. Yet, various obstacles are normally found in real compartments and
the question is whether they affect the gravity current velocity and the level of mixing

between fresh and vitiated gases. In the work reported here, gravity current prior to
backdraft in compartment with obstacles is investigated by means of three-dimen-
sional CFD numerical simulations. These simulations use as a reference case the back-
draft experiment test carried out by Gojkovic (2000, Initial Backdraft. Department of

Fire Safety Engineering, Lunds Tekniska Högskola Universitet, Report 3121). The
Froude number, the transit time and the ignition time are obtained from the computa-
tions and compared to the tests in order to validate the model.
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Nomenclature

B Width of the container (m)

C Drag coefficient of the obstacle

Fr Froude number

F Force (N)

g Gravity (m/s2)

h Height of the obstacle (m)

h* Non-dimensional height of the gravity current

ho Height of the gravity current measured over the distance 3L/4 to L (m)

* Correspondence should be addressed to: Christian Pérez-Jiménez, E-mail: cperez@labein.es
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h1 Height of the compartment (m)

L Length of the compartment (m)

q Two dimensional volumetric flow rate (m2/s)

P Pressure (Pa)

T Temperature (K)

ttrans Transit time (s)

tignition Ignition time (s)

tout Interval of time from opening to the reversed current returns to the opening wall (s)

v Velocity (m/s)

vgc Average velocity of the gravity current (m/s)

x Distance (m)

y Depth (m)

yc,op Depth of the gravity current at the opening (m)

b Buoyancy parameter

q. Density (kg/m3)

W Mass fraction of gas species (%)

Sub-script

1, 2 Indicates a section of the gravity current

w Waterfall

h, c Hot, cold

obst Obstacle

1. Introduction

A gravity current is the flow of one fluid into another, which is caused by a differ-
ence in density between the fluids under the influence of gravity. This density differ-
ence may be due to differences in chemical composition or in temperature between
the two fluids. There are many common examples of gravity current such as sea
breeze fronts, avalanches, lock exchanges, flows following volcanic eruptions, etc.

Research work on gravity currents prior to backdraft has already been pub-
lished. Fleischmann [1] conducted a series of scaled saltwater experiments using
flow visualizations. Its purpose was to investigate the gravity current speed and
the extent of the mixing region. The compartment (0.3 m 9 0.15 m 9 0.15 m) was
fitted with a variety of opening geometries (full, middle slot, door and window) on
one side. His work showed that, in the case of full opening, the mixing layer
between incoming gravity current and the surrounding fluid gradually expands to
occupy nearly the entire compartment. Furthermore, Fleischmann showed that the
Froude number and the non-dimensional head height of the gravity current, h*,
are independent of the density difference ratio.

Weng [2] also conducted some analyses of saltwater gravity currents using flow
visualization and digital particle image velocity. The scaled compartment
(0.6 m 9 0.2 m 9 0.3 m) was fitted with vertical openings of various geometries
(full, middle slot, door and window) combined with a ceiling opening.

However, these research works did not investigate the possible influence of
obstacles in the compartment on the gravity current. In real fires, various types of
furniture, equipment or other kind of obstacles are usually scattered on the floor.
Such obstacles create some flow resistance that may lead to breaking of the
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gravity wave and cause an internal hydraulic jump. Such jumps would cause
forced mixing that again would affect the resulting species concentrations and thus
would alter the conditions for backdraft formation [11].

The purpose of the present analysis was to determine the influence of obstacles
on gravity current mixing and on the ignition time using three-dimensional
numerical CFD simulations. To validate the modelling approach, the experimental
data of the backdraft experiment (test number 9) performed by Gojkovic [3] in a
shipping container is used for comparison.

However, before being able to carry out this study, it was necessary to check
the setup of the model by comparison with the results obtained in Fleischmann’s
scaled saltwater experiments. All this part is represented in the Annex.

Note should be made of the fact that some work has been done on simulation
of the flame dynamics subsequent to ignition. A full review would be beyond the
scope of this paper, but reference will be made here to work by Horvat et al. [4]
on dynamic and physical simulation of the whole event, covering the gravity cur-
rent, ignition, and deflagration, in the absence of obstacles.

1.1. Experimental Setup of Gojkovic

The experimental rig was built from a standard shipping container, measuring
5.5 m 9 2.2 m 9 2.2 m (length 9 width 9 height). The container was raised 0.4 m
from the ground. The walls were insulated with glass fibre insulation and the floor
was covered with concrete. The middle-slot opening covered 1/3 of the container’s
height (2.2 m wide and 0.7 high) and it was closed with a hatch. See Figure 1.

The fuel used in the backdraft experiments was natural gas (98% methane). To
ignite the combustible mixture in the container, an electrically heated metal wire
was placed at the end of the container as an ignition source. The wire was
approximately 1.0 m long and vertically oriented.

1.2. Experimental Procedure of Gojkovic’ Experiments

The experiment starts by closing the middle-slot opening and the pressure relief
panel. A small ventilation hole is opened to vent the overpressure created when

Figure 1. (a) Shipping container used in backdraft experiments; (b)
middle-slot opening of the container [3].
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starting the flame. The flame dies out approximately 1 min after the beginning of
the fire. However, the natural gas is kept flowing through the burner in order to
simulate the pyrolysis process where a high concentration of combustible gas is
generated. After a certain time, the burner is turned off, the ignition source is
turned on and the middle slot hatch is opened.

Surrounding air flows in the compartment in form of a gravity current and
mixes with the natural gas and combustion products, creating a flammable region.
When this flammable region reaches the ignition source, the gas mixture is ignited
and the backdraft deflagration starts. The numerical simulations performed here
cover the time interval between the opening of the hatch and the ignition of the
flammable mixture, that is, the period during which the gravity current develops.

2. Gravity Current Simulation: Gojkovic’s Experiment

2.1. Geometry Arrangement

Two gravity current scenarios were studied. Figure 2(a) shows the compartment
without obstacles as tested by Gojkovic, whereas Figure 2(b) presents the com-
partment with obstacles. In the text, the case without obstacles is referred as Free-
Obstacles case and the case with obstacles is referred as Zig-Zag case.

The flammability conditions that are temperature and concentration dependent
[5] are checked in a cylindrical volume of 1.0 m 9 0.1 m (length 9 diameter),
which is placed at the back of the enclosure (Table 1).

Figure 3 represents the distribution and the size of the obstacles inside the com-
partment for the Zig-Zag case. Whereas the compartment is 2,2 m wide, the paral-
lelipedic obstacles are only 1.55 m wide and placed alternatively to the left then to
the right of the room. The height of the obstacles has been chosen for its ability
to cause a hydraulic jump in the progressing gravity current, see Table 2.

Figure 2. (a) Gravity current scenario without obstacles; (b) Gravity
current scenario with obstacles.
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2.2. Minimum Size of Obstacles that Cause Hydraulic Jump

As mentioned before, obstacles create some flow resistance that may lead to
breaking of the gravity wave and cause an internal hydraulic jump. Such jumps
cause forced mixing that again will affect the resulting species concentrations and
can alter the conditions for backdraft formation. If the compartment is longer
than the 5.0 m of Gojkovic’s experiments, friction from the floor may create a
hydraulic jump in the same way as obstacles.

For obtaining the height of the obstacles that create hydraulic jump in the grav-
ity current, it is first necessary to calculate the values of depth and velocity at the
end of the inflow jet. Guigay et al. [6], describe how to obtain the velocity profile
at the opening in detail. The buoyancy parameter b [7] is used for that purpose.

In the next paragraphs, an algorithm for obtaining this is explained. The fol-
lowing equation, Equation (1), represents the densimetric form of the Bernoulli
equation between the waterfall (w) and the upstream of the hydraulic jump (point
1). It can be solved using classical mathematical software. Only one of the roots
for each density difference is valid for our problem. The results are given as q, yw
and vw in Table 2. See also Figure 4.

yc:op þ 0:7þ 1

2bg
q2

y2c;op
¼ yw þ

1

2bg
q2

y2w
ð1Þ

y3w � y2w 0:7þ yc;op þ
1

2bg
q2

y2c;op

 !
þ q2

2bg
¼ 0 ð2Þ

When a hydraulic jump is formed, corresponding depths of the cold airflow can
be found. Considering a control volume (CV) right upstream of the flow (at

Table 1
Gas Composition Inside and Outside the Compartment at
the Opening Time

Mass fraction, W, (%) CH4 CO2 H2O N2 O2

Inside the compartment 13.7 3.4 2.8 65.3 14.8

Outside the compartment 0.0 0.0 0.0 77 23

0.4 m 

0.3 m 

Wide = 1.55 m 

0.8 m 

1.5 m 

0.6 m 0.6 m 

5.5 m 

Figure 3. Obstacles distribution in the compartment (Zig-Zag case).
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x=x1) and downstream (x=x2) represented in Figure 5, the momentum equation
can be written as:

X
vol

F
!¼ F1

!þ F2
!þ Fobst

��! ¼ 0 ð3Þ

where Fobst (force due to the obstacle) is defined in Equation (4).

Fobst ¼ C
qv2

2
h ð4Þ

The bottom friction forces are neglected, as the horizontal distance is very small.
If P1 and P2 are the pressure upstream and downstream respectively, we have:

~F1

�� �� ¼ Z
y1

0

P1dz ¼
Zy1

0

ðqbgzþ qv21Þdz ¼ 1

2
qbgy21 þ qy1v21 ð5Þ

~F2

�� �� ¼ Z
y2

0

P2dz ¼
Zy2

0

ðqbgzþ qv22Þdz ¼ 1

2
qbgy22 þ qy2v22 ð6Þ

h
1F

η
v1

y1

y2
v2

2F
η

obstF
η

CV

Figure 5. Control volume right upstream of the flow.

xx1 x2

ρh

Th

yc,op 

HOT

y2 y(x)
y1

L

ρc
Tc

COLD

yw

vw

xw

Figure 4. Layout of a gravity current entering in a compartment.
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With the direction of the forces, shown on Figure 2, Equation (3) can be written
as:

1

2
qbgy21 þ qy1

q2

y21
� Cq

q2

y21
h� 1

2
qbgy22 þ qy2

q2

y22

� �
¼ 0 ð7Þ

y22 þ
2q2

bgy2
¼ y21 � C

q2

bgy21
hþ 2q2

bgy1
ð8Þ

The height of obstacle will be:

h ¼ bgy21
Cq2

y21 � y22 þ
2q2

bgy1
� 2q2

bgy2

� �
ð9Þ

This height of obstacle creates the necessary drag (thrust) to create a hydraulic
jump. This condition is necessary, but not sufficient, as the flow may have specific
energy high enough to override the obstacle without creating a jump.

We consider the height h necessary to create a downstream wave of height y2.
The filling time t needed to obtain this value y2 is:

t � q
BLy2

ð10Þ

B is the width of the container, and L its length. Equation (10) presupposes that
the baffles are placed as close to the inflow side as possible.

With the obstacle, the distance between xw and x1 is very small, so we can
neglect friction between them. In this case we can then make the assumption that
we have yw = y1 and vw = v1, in Figure 4.

The values of the two dimensional flow rate q and the height of the cold layer
at the opening yc,op depending on c are calculated in Guigay 2003. With these
results, yw is obtained from Equation (2) and y2 from Equation (10) for different
filling time.

It is estimated that baffles lower than the 6 s column will have very little effect.
Baffles equal to the height in the 8 s will then be effective for 2 s of time, and baf-
fles in the 12 s. column effective for 6 s. At that time two things happen, the flow
will sail over the baffles and the y2 depth will extend from wall to wall eliminating
the hydraulic jump. The hydraulic jump with its increased mixing will thus be effec-
tive for very limited amount of time, 4–6 s. Nevertheless, this extra mixing may
alter the flammability limits and thus change the risk of experiencing backdraft.

2.3. Initial and Boundary Conditions

The inner gas species accumulated inside the compartment at the opening time are
methane (CH4), carbon dioxide (CO2), water vapour (H2O), nitrogen (N2) and
oxygen (O2). Based on the concentration measured by Gojkovic [3], the initial mass
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fraction of each gas has been calculated and summarized in Table 1. These values
are applied in both simulations, the Zig-Zag case and the Free-obstacle case.

The initial velocity inside and outside the enclosure is taken as zero. The aver-
age initial temperature of the gas inside the compartment, Th, and the gas outside
the compartment, Tc, is 310 and 278 K, respectively. This gives a buoyancy
parameter, Equation (11), of 0.2.

b ¼ ðqh � qcÞ
qh

¼ 1� Tc

Th
ð11Þ

In the numerical simulations performed, the Detached Eddy Simulation (DES)
turbulence model was used [8]. The initial turbulence kinetic energy k and eddy
dissipation e were set to 0.0001 and 0.0001 m2/s3, respectively.

The boundary conditions for the container walls, obstacles, floor and the sur-
rounding ambient are summarized in Table 3.

3. Results of Simulation

3.1. Main Parameters

Four parameters are examined from the simulations: the transit time (ttrans), the
gravity current velocity (vgc), the Froude number (Fr) and the ignition time (tignition).

The transit time is a parameter used by Fleischmann [1] in his scaled saltwater
experiments. It represents the time required for the leading edge of the gravity cur-
rent to reach the wall opposite the opening. In the performed numerical simulations,
a change of the mass fraction of 10% at the rear wall was used as a criterion.

Then, knowing the transit time and the distance between the opening wall and the
end wall, L, the average gravity current velocity can be obtained using Equation
(12).

vgc ¼
L

ttrans
ð12Þ

Table 3
Boundary Condition for the Container, Obstacles, Floor
and the Ambient

Part Boundary type Characteristics

Floor Wall Wall influence of floor: No slip

Wall roughness: Smooth wall

Constant temperature of 278 K

Air Opening Initial temperature of 278 K

Static pressure of 1.0 atm for outflow and

total pressure of 1.0 atm for the inflow

Container obstacles Wall Wall influence of floor: No slip

Wall roughness: Smooth wall

Initial temperature of 310 K

Influence of Obstacles on the Development of Gravity



The Froude number, is calculated in terms of the gravity current velocity, the
buoyancy parameter, b, and the height of the compartment, h, using Equation
(13).

Fr ¼ vgcffiffiffiffiffiffiffiffi
bgh
p ð13Þ

The ignition time can be defined as the time interval between the opening of the
compartment hatch and the instant in which the gravity current reaches the ignition
source (electric wire) and dilutes the mixture of hot gases to its flammability limits.

In the simulations, the methane volume fraction is checked in the small cylindri-
cal volume at the back of the enclosure in each time step. If the methane volume
fraction is locally inside its flammability limits [5, 13], the ignition is supposed to
take place. As the aim of this paper is to show the influence of the obstacles on
the gravity current, the deflagration of the combustible mixture after ignition was
not simulated.

The numerical simulations were performed using CFX 5.7.1 code. The first 30 s
of the flow were simulated with a time step of 0.02 s. The total number of ele-
ments (tetrahedrons) was around 500,000 for each simulation. The computer used
for the simulation was Pentium(R) 4 CPU 2.40 GHz, 512 Mb RAM.

3.2. Visual Comparison of the Results: Zig-Zag Case vs. Free-Obstacles
Case

From the simulation, instantaneous fields of velocity and mass fractions of meth-
ane were obtained. Figure 6 shows methane mass fraction for the gravity current
vertical cross-section in the Free-obstacles case at time 4.2 s.

Figure 7 presents methane mass fraction for the Zig-Zag case also at time 4.2 s.
The hydraulic jump and vortex created by the obstacles is clearly seen. Higher
vortexes are obtained in the Zig-Zag case than in the Free-obstacles case.

Figures 8 and 9 represents the fields of mass fraction of methane for both cases
at 10.2 and 19.2 s, respectively. A direct comparison of these scenarios is possible.
One can say that the obstacles considered here create more local mixing and tur-
bulence but not necessarily a well-mixed situation throughout the compartment.
One may well observe a higher average gravity current velocity when obstacles are
not present.

3.3. Quantitative Comparison of the Results: Zig-Zag
Case vs. Free-Obstacles Case

The ignition time, the gravity current velocity, the transit time and Froude num-
ber for both simulations are given in Table 4. Column 1 indicates the type of sce-
nario, column 2 shows the transit time, ttrans, column 3 gives the average gravity
current velocity, vgc, column 4 gives Froude number and column 5 and 6 give the
ignition time computed in simulations, tignition, and the ignition time obtained
from the backdraft experiments, tignition experimental.
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Based on the results, it can be observed that the average velocity of the gravity
current in Zig-Zag case is reduced in comparison with the Free-Obstacles case.
For this compartment ratio and obstacle size and distribution, the gravity current
velocity is divided by a factor of 2 when including obstacles.

The influence on the level of mixture can be also observed in the value of the
ignition time computed for the Zig-Zag and Free-Obstacles cases, see Table 4. The
time at which a flammable region of the gravity current reaches the ignition wire
when including obstacles is 0.54 of the free-obstacle case.

Figure 7. (a) Temperature of the gravity current of the Zig-Zag case
at time 4.2 s.

Figure 6. (a) Mass fraction of methane of the gravity current for the
Free-obstacles case at time 4.2 s.

Influence of Obstacles on the Development of Gravity



One may also observe a great decrease in the Froude number in the Zig-Zag
case. According to Benjamin [9], the Froude number for flows without mixing
between fluids (no energy losses) is equal to 0.5. Thus, lower values of the Froude
number should be interpreted as higher level of mixing between fluids and there-
fore, as a lower average gravity current velocity.

Figure 9. Fields of mass fraction of methane at 19.2 s from the
opening time: (a) Free-obstacles case; (b) Zig-Zag case.

Table 4
Ignition Time, Transit Time and Froude Number for Both
Cases

ttrans Vgc Fr tignition computed tignition experimental

Free-obstacles case 8.4 0.65 0.31 13.5 Min: 15 Max: 45

Zig-Zag case 14.2 0.32 0.18 24.9 –

Figure 8. Fields of mass fraction of methane at 10.2 s from the
opening time: (a) Free-obstacles case; (b) Zig-Zag case.
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Comparing the ignition time of the Free-obstacles case with the ignition time of
Gojkovic’s experiment, a lower value is obtained in the simulation. Better results
could be found if instead of having considered a uniform gas temperature distri-
bution inside the compartment at the initial time, a stratified temperature distribu-
tion would be chosen.

3.4. Conclusions

Numerical analysis of gravity current behaviour in a compartment with and with-
out obstacles (Zig-Zag and Free-Obstacles case) was performed using CFX 5.7.1
code. The conditions from the experiment No. 9 [3] were used for the initial and
boundary conditions in the numerical models.

Thus, the scaled saltwater experiments carried out by Fleischmann [1] have been
used for validating the accuracy of the setup of the model. Also the Free-obstacle
case is used for validating the accuracy of the setup of the model such as bound-
ary conditions, inner gas concentration with Gojkovic’s experiments and also for
comparing the influence of the obstacles with the Zig-Zag case.

The obstacles height has been chosen in such a way that a hydraulic jump is
created in the gravity current. It shows that having obstacles in a compartment
can alter significantly the gravity current structure, level of mixing and average
gravity current velocity and therefore it can affect the severity and intensity of a
backdraft deflagration.

Based on the results, it is observed that the ignition time and the transit time
are multiply by a factor close to 2 and the Froude number divide by 2 for the
Zig-Zag case. These factors will change as a function of the obstacles distribution.
Other obstacle distribution have been analysed in [10].

The delay in the ignition time caused by obstacles can mislead the fire fighters
that face a fire in a compartment with a high density of obstacles. The risk of
backdraft may indeed persist for a longer duration in such a case than what has
been experienced in previous fires with few obstacles, or in experimental, demon-
stration or practice backdrafts that are usually performed in the total absence of
obstacles.

Further research should be focused on gravity currents in more complex enclo-
sures with different obstacles distribution (e.g. typical furniture or equipment dis-
tribution in real compartments) and openings. Also the study of gravity currents
in enclosures in which hot items are still present on the floor when the gravity
current enters the enclosure should be studied, because the local energy dissipation
and the associated buoyancy current may also disturb the gravity current. This
would help to elucidate, in a more realistic way, the gravity current’s structure.
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Annex

Experimental Setup of Fleischmann’s Experiments

The saltwater experiments were conducted by placing an acrylic compartment
within a larger glass tank. The tank (0.3 m wide, 0.6 m long, and 0.45 m deep)
contained a dense saline solution ranging in density from 1.003 to 1.101 kg/m3.
The solution temperature was 18�C. Standard rock salt crystals were dissolved in
tap water to raise the density to the desired level.

The compartment was constructed using 6.0 mm thick acrylic with an interior
dimension of 0.15 m wide, 0.3 m long and 0.15 m high. The openings were a fully
opened wall (0.15 m 9 0.15 m), a horizontal slot (0.15 m wide 9 0.05 m high)

Centred Window 

5 cm 

5 cm 

Centred Door 

5 cm 

5 cm 

Middle-slot 

15 cm 

Full

30 cm 

45 cm 

60 cm 

15 cm 

15 cm 

30 cm 

15 cm 

12 cm 

Figure 10. Saltwater configuration and opening geometries used in
Fleischmann’s experiments.
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centred vertically at the end of the wall, a window (0.05 m2) centred vertically and
horizontally on the wall and the last opening was a door (0.12 m high 9 0.05 m
wide) centred horizontally with the bottom of the opening at floor level. Figure 10
shows the saltwater configuration and the opening geometries.

Initial and Boundary Conditions

In each of these simulations the fluid used is air. To obtain the difference in den-
sity between the inner and outer air, different temperatures are given. In the salt-
water experiment, the temperature of both fluids remains constant (18�C) and the
difference in density is obtained by adding more or less salt. This difference
between the simulation and the physical model has no influence on the results.

The dimensions of the compartment are identical to the experimental setup. The
compartment is positioned on the far left of the saltwater container, which is
0.55 m long, 0.35 m deep and 0.3 m wide. The enclosure is also raised 5.0 cm
from the bottom of the container (Figure 10).

The density of the inner and the outer fluid is 1.205 and 0.833 kg/m3, respec-
tively. These values are obtained by giving an initial temperature of 423 and
293 K for the inner and outer fluid, respectively, which gives a buoyancy of
0.3072. Only one value of buoyancy is simulated for each opening geometry since
the Froude number values are independent of the density difference ratio [1].

To simulate these scenarios, the k-epsilon turbulent model has been used, with
an initial k and epsilon equal to 0.0001 m2/s2 and 0.0001 m2/s3, respectively. The
velocity inside and outside the enclosure was initially set to 0.0. The inner fluid
mass fraction was set to 1.0 inside the compartment and 0.0 outside the compart-
ment. For the outer fluid the opposite values are given, i.e. 0.0 inside the compart-
ment and 1.0 outside the compartment. The boundary conditions for the
container, floor and air are summarized in Table 5.

About 20 s were simulated with a time step of 0.02 s. The total number of ele-
ments (tetrahedrons) for each simulation is around 400,000.

Table 5
Boundary Condition for the Container, Obstacles, Floor and
the Ambient for the Simulation of the Scaled Saltwater
Experiments

Part of scenario Boundary type Characteristics

Floor Wall Wall influence on floor: No slip

Wall roughness: Smooth wall

Heat transfer: Adiabatic

Air Opening Initial temperature: 293 K

Floor direction: Normal to boundary conditions

Container Wall Wall influence on floor: No slip

Wall roughness: Smooth wall

Heat transfer: Adiabatic
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Figure 11. Visual comparison between (a) saltwater experiments
and (b) CFX simulation.
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Qualitative Comparison of the Results: Scaled Saltwater Experiments vs.
Simulations

Figure 11(a) represents photographs taken from the saltwater experiments. They
represent the mass fraction of the gravity current approximately 3L/4 into the
compartment for different opening geometries. Black represents the inner fluid and
the lightest colour is for the outer one.

These photographs closely resemble the numerical simulation results shown in
Figure 11(b).

Quantitative Comparison of the Results: Scaled Saltwater Experiments vs.
Simulations

To compare the numerical simulations quantitatively with the experiments, the
non-dimensional velocity or Froude number and the transit time, ttrans, is used.

For the saltwater experiments, the transit time was taken from a video record-
ing of the gravity current. Once the gravity current reaches the rear wall, it is
reflected up and around until it travels toward the opening. A Froude number is
also calculated for the returning current. The returning gravity current is defined
in Equation (14), where tout is the time from opening to the time the reversed cur-
rent returns to the opening wall.

vgc ¼
2 � Lþ 2h1=3

tout
ð14Þ

The 2h1/3 factor is used to account for the length the current must travel up the
wall opposite the opening [1].

Results of the Simulation

Table 6 shows ttrans, tout, and the buoyancy parameter b obtained from simula-
tions as well as a comparison between the Froude numbers (entering and exiting)
from saltwater experiments and simulations.

Table 7 represents ho obtained from simulation and the average value of h*
obtained by simulations and experiments. Note that ho is height of the gravity

Table 6
Bouyancy Parameter, ttrans, tout, and Froude Number from Saltwater
Experiments and CFX Simulation for Different Opening Geometries

Case B (-)

Entering current Exiting current

CFX ttrans (s) Fr exper. Fr CFX CFX tout (s) Fr exper. Fr. CFX

Full opening 0.3072 0.99 0.44 0.45 2.3 – 0.45

Slot opening 1.35 0.32 0.33 3.2 0.32 0.32

Centred door 1.20 0.35 0.37 2.9 0.35 0.36

Centred window 2.00 0.22 0.22 5.1 0.22 0.20
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current measured over the distance 3L/4 to L. This interval is chosen to reduce
any effects caused by the openings, h* is defined as ho/h1.

The simulations and the experiments were found to agree. As a result, one may
now say that the setup of the model has been well defined. One may then well
suppose that the simulations carried out in the following sections will lead to the
same accurate results.
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