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ABSTRACT - In the early 80's the SMUP computer code was developed at the "Jozef Stefan" Institute for
simulation of two-phase flow in steam generators. It was suitable only for steady-state problems and was unable
to simulate transient behaviour. In this paper, efforts are presented to find suitable numerical method to renew the
old SMUP computer code. The obsolete numerical code has to be replaced with a more efficient one that would
be able to treat time-dependent problems. It also has to ensure accurate solution during shock propagations. One-
dimensional shock propagations in a tube were studied at zero viscosity. To simplify the equation of state the
ideal gas was chosen as a working fluid. Stability margins in the form of transport matrix eigenvalues were
calculated. Results were found to be close to those already published.

NOMENCLATURE
a advection velocity Greek Letters
c convection matrix term T Ludolf’s number
CFL  Courant-Friedrichs-Levy criteria p density
d diameter, pressure matrix term Y numerical cell boundary
f friction factor ® numerical cell volume
g gravity acceleration A finite difference
/ length
p pressure Subscripts / Superscripts
q volumetric flow 1 pressure calculation position
R gas constant i grid point index
t simulation time iMax max number of grid points
T temperature j grid point index
u momentum (pv) n number of iteration
v velocity
X horizontal coordinate
z vertical coordinate
INTRODUCTION

In the early 80's the SMUP computer code was developed at the "Jozef Stefan" Institute for
simulation of two-phase flow in steam generators, which is extensively described in Gregoric et al.
(1984) and in Petelin et al. (1986). The code was written as an incompressible flow code to calculate
steady-state heat transfer and fluid flow behaviour. The code was unable to simulate transients and
had very serious stability problems. Because of these deficiencies the code applicability was very
limited.

In this paper efforts to find suitable numerical method to renew the old SMUP computer code are
presented. The obsolete numerical code has to be replaced with a more efficient one which would be
able to treat time-dependent problems. It also has to ensure an accurate solution during shock
propagations. To determine the most suitable numerical scheme the accuracy and stability of different
schemes were tested. Extensive testing revealed the numerical scheme which combines accuracy and
also stability even at large time steps.



MODEL

The stability and accuracy of numerical schemes were tested using severe shock simulations in a
pipe. The length of the pipe was /0m and the shocks were always initiated at one half of its length.
The pipe diameter was 0./m. Because of extensive experimental and computational work already
done by others (Hirsch, 1990) the air was chosen as a working fluid. To further simplify the equation
of state, the working fluid was considered an isothermal ideal gas. With the gas constant 287J/kgK
the initial pressure was /bar and the initial density /.0kg/m’.

In many cases not only the Navier-Stokes equation but also the convection equation (eq. 1) and the
Burger equation (eq. 2) are used to simulate transport phenomena in fluids.
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For testing convection equation (eq. 1) numerical scheme one-dimensional velocity shock
propagations were studied. On the left side of the simulation domain the velocity was 300m/s
whereas on the other side the velocity was zero. At the inlet (e.g. on the left boundary) the Neumann
boundary conditions were prescribed and at the outlet (e.g. on the right boundary) the second order
boundary conditions were prescribed.
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Also, for testing the Burger equation (eq. 2) numerical scheme one-dimensional velocity shock
propagations were studied. On the left side of simulation domain the velocity was 300m/s whereas on
the other side the velocity was zero. The boundary conditions at the inlet and outlet side where the
same as in the case of convection equation (eq. 1).
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For testing the Navier-Stokes equation (eq. 3) numerical scheme one-dimensional pressure shock
propagations in a tube were used at zero viscosity. On the left side of the simulation domain the
pressure was /bar whereas on the other side the pressure was 0. /bar. Because the fluid flow also has
to obey mass conservation law, the Navier-Stokes equation is coupled with the continuity equation:
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Basic criterion for boundary conditions was the mass conservation. At the left boundary second order
boundary conditions for velocity and the Neumann boundary conditions for pressure were prescribed.
At the outlet the Neumann boundary conditions for velocity and the second order boundary conditions
for pressure were prescribed.

NUMERICAL METHODS

In all simulated cases the numerical mesh had 101 grid points (fig. 1). The time and space
discretisations were first order accurate. For all three cases the finite volume method (Versteeg &
Malalasekera, 1995) was applied with the upwind discretisation of the fluxes.
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Fig. 1: Numerical mesh arrangement.



For time integration of the convection equation the explicit Euler method was used. In matrix form
the convection equation (eq. 1) is written as:
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where the advection velocities are defined as:
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a* :%(a+|a|) and a~ zz(a—|a|).

Also, for time integration of the Burger equation the explicit Euler method was used. In matrix
form the Burger equation (eq. 2) is written as:
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They are functions of calculated velocities and they are not constant as in the case of the convection
equation (eq. 5).

In the Navier-Stokes equation, the pressure is also introduced as one of the simulated variables.
Although only the staggered grid arrangement for pressure field (fig. 1) is presented here, the
collocated grid arrangement (Ferziger & Peri¢, 1996) was also extensively tested. A stable numerical
algorithm however, was not found. For time integration of Navier-Stokes equation the projection
method was used (Bell et al., 1989), where the time integration is split into separate stages:
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The convection part was integrated explicitly with the Euler method and the continuity equation was
treated implicitly:
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In matrix form (eq. 9) is written as:
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where the advection velocities are defined as in the case of the Burger equation (eq. 7). The first stage
of the Navier-Stokes equation (eq. 9) is then combined with the continuity equation (eq. 11) into the
pressure equation (eq. 13) to satisfy mass conservation at time level n+1.
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The pressure equation (eq. 13) in matrix form is then written as:
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After pressure calculation, which was in this case done with the Gauss-Jordan elimination (Press et
al., 1993), the velocity is updated with pressure gradient:
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STABILITY

The stability of numerical schemes for convection dominated problems was usually connected with
Courant-Friedrichs-Levy condition:

CFL = vAx , (16)
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where v is the advection velocity. For pure convection equation (eq. 1) and most of the numerical
schemes the CFL condition is easy to calculate (e.g. CFL condition for upwind discretisation is 0 <
CFL < 1). This approach does not take into account the influence of boundary conditions and also
fails when it is applied to non-linear problems such as the Burger equation (eq. 2) or the Navier-
Stokes equation (eq. 3).

Another approach to stability analysis is the so-called matrix method (Hindmarsh et al., 1984),
which also takes into account the boundary conditions (vector S) :
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The solution of (eq. 17) stays stable when the real part of matrix 4 eigenvalues is bounded:
Re(r)|<1. (18)

When the matrix method stability criteria (eq. 18) is applied to the Euler scheme with upwind
discretisation, the calculated stable range is twice as wide as before. This was however not proved in
practice and was strongly criticised (Hindmarsh et al., 1984).

To avoid this misunderstanding of matrix method stability conditions, a more general matrix
analysis was applied. This method can be also used for linear and non-linear convection problem in
one, two or three dimensions. In general, the (eq. 5, 7, 12) can be written in matrix form as:
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The vector v at n+1 is calculated when vector v at » is multiplied with the transport matrix C:
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When the vector v is repeatedly multiplied with operator C as in the case of numerical simulation, the
stability of the numerical scheme depends only on operator C eigenvalues:
(22)

To ensure stable numerical iterations the eigenvalues have to be not only bounded but also the real
part of each eigenvalue has to be larger than 0:
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For the eigenvalues calculation the asymmetric matrices C were first balanced and then transformed
into Hessenberg form. Next, the QR decomposition was used to obtain complex eigenvalues. The
mathematical and numerical procedures are well described in Golub & Van Loan (1996).

RESULTS

Numerical simulations of shock propagations were performed using the convection equation, the
Burger equation and the Navier-Stokes equation. In all cases the same numerical grid and simulation
time interval 0.008s were applied. Only the number of time iterations and the timestep were changed
from case to case to show the stability eigenvalues dependence. The simulations also revealed that in
all cases eigenvalues stay real during time iterations.

For the convection equation numerical simulations with 700, 50, 25 and 23 time iterations were
done. These corresponds to timesteps of 0.00008s, 0.00016s, 0.0032s, 0.00348s and to the CFL
values of 0.24, 0.48, 0.96, 1.043, respectively. Because of the clarity only the examples with 50 and
23 time iterations are presented.
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Fig 4. Shock propagation (23 iterations). Fig S. Eigenvalues time distribution (23 iterations).



It can be observed on fig. 2 and 4 that the instability of numerical scheme is increased when the
number of time iterations is reduced or when the timestep is enlarged. On fig. 3 and 5 the time
developments of the transport matrix eigenvalues are presented. Because the advection velocity a is
constant, the eigenvalues stays unchanged during the entire time integration. The largest eigenvalue
on the left is one due to predefined velocity at the inlet boundary. As the number of time iterations is
reduced (from 50 to 23) and the timestep is increased (from 0.00016s to 0.00348s) the n-1 eigenvalues
are approaching zero, which clearly indicates unstable behaviour (fig. 5).

For the Burger equation numerical simulations with 200, 100 and 51 time iterations were carried
out. This corresponds to timesteps of 0.00004s, 0.00008s, 0.000157s and to the CFL values of 0.12,
0.24, 0.471, respectively. Because of the clarity only the examples with 200 and 57 time iterations are
presented.
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Fig 6. Shock propagation (200 iterations).  Fig 7. Eigenvalues time distribution (200 iterations).
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Fig 8. Shock propagation (51 iterations). Fig 9. Eigenvalues time distribution (51 iterations).

Again the examples on fig. 6 and 8 show the increased instabilities when the number of time
iterations is reduced or when the timestep is enlarged. This is the case where the CFL condition fails
to predict unstable behaviour. The CFL condition is 0.471 when numerical integration already
diverges. On the other hand, the time developments of the transport matrix eigenvalues on the fig. 7
and 9 clearly show when one of the eigenvalues is approaching zero. This results in growing
instabilities.

In the case of the Navier-Stokes equation the developed numerical code was first verified by
comparing calculated and analytically obtained results of pressure shock propagation in Tiselj (1997).
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Fig 10. Pressure comparison (¢ = 0.0031s). Fig 11. Pressure comparison (¢ = 0.0061s).

As presented on fig. 10 and 11, the numerically calculated results are close to those already published,
which justifies the described approach for compressible flow treatment. The numerically calculated
density and velocity field differ from the analytically calculated for about 20 percent due to
isothermal ideal gas approximation of the working fluid.

The numerical simulation of pressure shock propagations were performed with 200, 100, 50 and 45
time iterations. These correspond to timesteps of 0.00004s, 0.00008s, 0.00016s, 0.000178s and to the
CFL values of 0.12, 0.24, 0.48, 0.53, respectively. Because of the clarity only the examples with 200
and 45 time iterations are presented.
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Fig 12. Shock propagation (200 iterations)  Fig 13. Eigenvalues time distribution (200 iterations).

100000 T T T T T T

90000 -

)

;

.
L
U
\\\\

80000 - eigenvalue (R)

\
.
|
;
.
\\}\‘\

——
70000 7 1.0 /§,—’

60000 - i 0.8 = =

N
J
\
/{{{\{/{/ﬂ

\\\\
!

—

pLPa]

50000 |-

7
i
)
X
N

40000 -

\

;\Q

v
9

30000

=\

20000 |-

> 0.008

-

10000 - i 0006

0

50 40 30 20 <10 00 1.0 20 3.0 40 5.0 10 20 39 20 ~0.004 time [s]
50

xm]

70 gg

. 60
eigenvalue number 0.002

9 100

Fig 14. Shock propagation (45 iterations) Fig 15. Eigenvalues time distribution (45 iterations).

Again, the examples on fig. 12 and 14 show the increased instabilities when the number of time
iterations is reduced or when the timestep is enlarged. The stability analysis of Navier-Stokes



equation is more complicated because of the pressure field that forces the mass conservation. In spite
of fact that a complete stability analysis of the Navier-Stokes equation should also include pressure,
the instabilities are principally governed by the size of the transport matrix eigenvalues. As fig. 13 and
15 show, the instabilities occur immediately when one of the eigenvalues becomes negative.

CONCLUSIONS

The stability of first order accurate schemes for convection problems were analysed in order to
find a suitable numerical algorithm for the old SMUP code. For this purpose velocity shocks were
simulated using the convection equation and the Burger equation. The compressible form of Navier-
Stokes equation was applied for pressure shock testing. Results of code verification justify the
selected numerical algorithm.

For stability analysis the matrix method was modified and the new stability criteria were
developed. These criteria are based on calculated eigenvalues of the so-called transport matrix.
Results of eigenvalue computations during simulations, when the convection equation or the Burger
equation was applied, prove the accuracy of the introduced stability criteria. The same criteria were
also applied to the Navier-Stokes equation during pressure shock calculation. Although the
eigenvalues calculation of the convection part of the Navier-Stokes equation is inadequate as precise
stability criteria, the simulations showed that instabilities are principally governed by the size of
eigenvalues.

In the future the stability of the Navier-Stokes equation will be further investigated to clarify the
stability conditions and ensure a solid base for time dependent flow modelling.
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