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Abstract

Reactor pressure vessel lower plenum retention problem was studied to determine
external cooling margins of the plenum walls. The accumulated melt was
modelled as an incompressible fluid with internal volumetric heat generation in a
rectangular cavity. A Smagorinsky type of Large-Eddy Simulation model for
buoyancy flows was implemented. Because of uncertainty about upper wall
thermal boundary conditions, isothermal and adiabatic boundary condition were
used to assess heat transfer margins (Nusselt number) at each boundary of the
simulation domain. It was found out in both calculated cases that the Nusselt
number is the lowest at the bottom of the simulation domain and increases with
height. In the future nuclear safety studies the most severe wall thermal conditions
from both simulated cases will have to be considered.

1 Introduction

During a hypothetical accident scenario in the field of nuclear
safety the general meltdown may occur as explained in Parzer [9]. The
reactor core melts, relocates itself and accumulates in the lower plenum
of the reactor vessel. Heat is further generated in the pool due to fission
products decay. Because of high temperature melt, the integrity of the
lower plenum could be threatened unless sufficient outside cooling exists.
From an engineering point of view, the lower plenum retention problem
is to determine the reliable external cooling margins of the plenum walls.



To do so, prediction of the fluid motion in a pool with internal heat
generation is the crucial task. A review of experimental and theoretical
results may be found, for example, in the work of Nourgaliev et al. [8].

At the present stage of knowledge, some uncertainties exist about
heat removal from the surface of the pool which is exposed to the reactor
core debris ( Theofanous et al. [10] ). Thermal conditions on the surface
have a significant impact on the fluid dynamic behaviour of the pool. In
the present work, the influence of two extreme thermal conditions
(isothermal and adiabatic) at the pool upper surface on the fluid
circulation was studied. At the other walls, isothermal conditions for
temperature were prescribed to model melting and solidification
processes.

2 Governing equations

In the present work the melt in the lower plenum is modelled
considering an incompressible fluid with internal volumetric heat
generation in a rectangular cavity. Using Boussinesq's approximation the
equations of fluid motion are written as :
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where v is the velocity, T is the temperature, p is the pressure modified
for hydrostatic pressure, T is the strain tensor, / is the rate of volumetric
heat generation, g is the gravity acceleration, p is the density, [ is the
thermal dilatation, ¢, is the specific heat and A is the thermal
conductivity.

The transformation of eqns (1), (2) and (3) into a dimensionless
form as in Decker [2], simplifies the equations into :
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where Ra is the Rayleigh number and Pr is the Prandtl number.



The occurrence of hydrodynamic instabilities which leads toward
turbulent fluid motion is correlated to the Rayleigh number. In our
simulations, the Rayleigh number was 10" and the Prandtl number 1.2,
which was also the case in Nourgaliev et al. [8]. According to Decker [2],
the transition to turbulent motion is expected already at Ra >5-10°. For
these reasons, proper turbulence model has to be implemented. In most
cases, as it was summarized in Dinh et al. [3], standard or low Reynolds
number k-& models are used to model turbulent motion.

In the presented work, a Smagorinsky type of Large-Eddy
Simulation model for buoyancy flows as developed in Eidson [4] and
modified in Voke [12] was adopted. We were not successful in finding
any previous implementation of a Large-Eddy Simulation model for
turbulent natural convection flow with internal heat generation in open
literature.

After using the Large-Eddy Simulation concept, eqns (4), (5) and
(6) are written as :
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where ~ denotes locally averaged values. The last terms in eqs (8) and
(9) arise due to modelling of subgrid scale terms after filtering process. S

is the deformation velocity tensor, v, is the subgrid viscosity defined as

RaPr s\ (10)
V.\'gd :((/W\Ax)2 2§:§+ VTé
Pr.\'gd |g| s
and v, is the subgrid thermal diffusivity defined as
ngd (1 1)
ngd =
Pr.vgd .

The Smagorinsky constant C_ and the turbulent Prandtl number Pry are

only empirical parameters in the presented turbulence model. In our case
C,=0.21 and Pry,q= 0.35 as in Eidson [4].



As the Smagorinsky model is too dissipative in the vicinity of the
walls, the use of turbulent viscosity damping functions is necessary.
Madabhushi and Vanka [7] suggest the function (12) to damp excess
subgrid viscosity as
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where n" =u.n/v (u. and n denote friction velocity and normal wall

distance, respectively).

Egns (7), (8) and (9) were solved applying no-slip boundary
conditions at all boundary walls of a rectangular cavity. The boundary
conditions for temperature were isothermal except at the top, where either
isothermal or adiabatic boundary conditions were prescribed.

3 Numerical methods

Time dependent transport eqns (7), (8) and (9) with appropriate
boundary conditions were solved using a two-dimensional numerical
code based on the finite volume method as described in Versteeg and
Malalasekera [11].

For spatial discretisation a staggered grid was implemented.
Numerical discretisation of momentum eqn (8) followed the way of the
Harlow and Walsh [5] scheme. However, the temperature field in the
energy eqn (9) required a 2nd order accurate upwind scheme.

Time integration was independent from spatial discretization. For
energy eqn (9) the 2nd order accurate Adam-Bashford scheme was
implemented :
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In the case of momentum eqn (8) a combination of Adam-Bashford
scheme and projection method was used.

In this way, the solenoid velocity field v is uniquely decomposed

into velocity field v, which is not divergence free, and gradient of
pressure p as it is extensively described in Bell et al. [1]. Consequently,
the decomposition leads to the following steps in the time integration

procedure of momentum eqn (8). First, the auxiliary vector field v ois



computed from equation (15) :
Vo= Ar(RHS™ )45 (15)

Then, the pressure field is calculated using mass conservation equation
(7) in order to obtain the Poisson equation V?p=V3"/Ar. In our case the

Poisson equation was solved implementing a direct Poisson solver. At the
end the gradient of pressure field p is added :
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In the presented work 128x128 grid points were used to perform
calculations. Approximately 60 hours of CPU time on Sun Ultra 2
workstation were necessary to reach steady-state conditions.

4 Results and discussion

Numerical simulations were performed at Rayleigh number 10"
and Prandtl number 1.2, which is a well documented case and
corresponds to the thermal situation in the reactor vessel lower plenum.
To validate the numerical code simulation results were compared with the
results of Nourgaliev et al. [8].

For the case of isothermal upper boundary the integral Nusselt
numbers for each boundary were calculated. Comparison of results is
presented in table 1. It shows good agreement with some discrepancies in
case of upper boundary due to thermal instabilities.

Table 1: Comparison of results for isothermal upper boundary .

boundary present calculations Nourgaliev et al. [8]
bottom Nu = 14.815 Nu = 14.535
side Nu = 67.646 Nu = 66.480
upper Nu =90.940 Nu=73.184

The distribution of heat transfer at the bottom wall was also
calculated. Fig 1 shows the comparison between present calculations and
calculations made by Nourgaliev et al. [8]. Again the results are in good
agreement with those already published (Nourgaliev et al. [8]) .

These comparisons were done to demonstrate the capability of the
described approach to model turbulent natural convection in fluids with
internal heat generation as discussed also in Horvat and Kljenak [6]
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Figure 1: Nusselt number at bottom boundary of simulation domain.
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Because of uncertainty about upper wall thermal boundary
conditions, the isothermal and adiabatic boundary conditions were used
to assess heat transfer margins (cooling margins) at each boundary of the
simulation domain. On fig 2 the cooling margins on bottom and side

walls for the case of upper wall isothermal and adiabatic boundary
conditions are presented.
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Figure 2: Local Nusselt number at bottom (left) and side (right) walls .

Cooling margins on upper wall for the case of upper wall isothermal and
adiabatic boundary conditions are presented on fig 3.
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Figure 3: Local Nusselt number at upper wall .

It was found out in both calculated cases that the Nusselt number is the
lowest at the bottom of the simulation domain and increases with height.
In the case of upper wall isothermal boundary conditions the heat transfer
is increased through the bottom and reduced through the side walls
whereas in the case of upper wall adiabatic boundary conditions the heat
transfer is increased through the side walls and reduced through the
bottom. The largest heat transfer can be expected in the case of upper
wall adiabatic boundary conditions in the vicinity of the upper boundary,
where it reaches a local value of Nu =300.

Fig 4 shows qualitative velocity vector fields for upper wall
isothermal and adiabatic boundary conditions.
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Figure 4: Qualitative velocity vector field for upper wall isothermal (left)
and adiabatic (right) boundary conditions.

It can be observed on fig 4 that velocities are greater in the case of upper
wall isothermal boundary conditions. At the upper wall the fluid is cooled
and the intrusions of cold streams stretch deep into the bulk. In the case
of upper wall adiabatic boundary conditions the velocity field is more
stable and the intrusions of cold streams are not present.



On fig 5 the temperature fields for upper wall isothermal and
adiabatic boundary conditions are presented with isotherms. The
dimensionless temperature is between 0.0 to 0.015 with distances of
0.001 between isotherms.
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Figure 5: Temperature field for upper wall isothermal (left) and
adiabatic (right) boundary conditions.

Fig 5 (right) shows stable stratification of temperature field with
increasing temperature from bottom to top in the case of upper wall
adiabatic boundary conditions. In the case of upper wall isothermal
boundary conditions (left) only the lower part of the melt pool is
stratified. The upper part of the temperature field is influenced by
intrusions of cold streams.
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Figure 6: Turbulent viscosity field for upper wall isothermal (left) and
adiabatic (right) boundary conditions.



This phenomena can be also seen on fig 6, which shows turbulent
viscosity fields for upper wall isothermal (left) and adiabatic (right)
boundary conditions with isolines. The dimensionless turbulent viscosity
is between 0.0 and 0.4 with distances of 0.05 between isolines.

The turbulent viscosity is modestly developed in the case of
adiabatic boundary conditions. On the contrary, in the case of isothermal
boundary conditions the higher velocities and intrusions of cold streams
from the upper wall boundary layer produce locally strong turbulence.

5 Conclusions

The influences of thermal conditions on the surface of melt pool
in lower plenum were studied to investigate upper limits of heat transfer
through the plenum's wall.

The melt was modelled as a fluid with internal heat generation at
Rayleigh number Ra =10" and Prandtl number Pr=1.2. The thermal
boundary conditions were isothermal at the bottom and side walls. At the
top, adiabatic and isothermal boundary conditions were used to assess
heat transfer bounds.

The modified Smagorinsky subgrid model was used to model
turbulent behaviour of the fluid. We were not successful in finding any
previous implementation of a Large-Eddy Simulation model for turbulent
natural convection flow with internal heat generation in open literature.

Results obtained with numerical integration show that upper wall
adiabatic boundary conditions reduce heat transfer through the bottom
wall and increase it through the side walls. We also calculated the largest
heat transfer which occurs in the case of upper wall adiabatic boundary
conditions in the vicinity of top boundary.

Because of difficulties predicting the exact thermal conditions on
the pool surface during a specific meltdown scenario, the future nuclear
safety studies will have to consider most severe wall thermal conditions
from both simulated cases.

In the future work the flows with higher Rayleigh number will be
modelled using the presented approach.
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