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Abstract

Melting ultimately requires the heat production rate to exceed the removal rate. In a
nuclear reactor this situation is initiated by either overpower or undercooling conditions. The
latter is related to reduced cooling through loss of coolant flow or loss of coolant itself and may
lead to general meltdown of the reactor core.

Molten material is accumulated in the lower plenum of the reactor pressure vessel. The
separation of phases results from different components densities of molten material. High
temperature molten UQO> will slowly melt through the wall of RPV lower plenum. To avoid
disruption of RPV, an instantaneous heat transfer is needed.

To simulate the situation described above, general multiphase flow equations were
developed. In order to describe the multiphase flow fully, the continuity, momentum and energy
equations were derived using ensemble averaging rather then time or spatial averaging.
Because of geometry of the lower plenum a spherical coordinate system was used, to enhance
the accuracy of the calculation on the border.

Introduction

In the case of prolonged and complete failure of normal and emergency coolant system
of nuclear reactor, the fission material decay heat causes overheat conditions. The rise in
temperature brings steel material of the reactor core and zircaloy cladding to exothermic
oxidation at 1300 K [1]. If cooling is not restored, the general meltdown of the reactor core
takes place. Melting scoops the steel equipment at 1700 K [2], then the zirconium oxide at 2990
K [3] and finally the uranium oxide at 3113 K [4]. Such conditions produce jets of melt, which
accumulate in the lower plenum of the reactor core.
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This are the reasons why such complex

problem may be simplified to the mixing Figure 1: Lower plenum of RPV

of two phases. The third phase represents
the RPV wall that contacts high
temperature uranium oxide melt, which
results in gradual melting and erosion.

Our intention is to evaluate cooling required to avoid disruption of RPV and release of
core material. Secondly we intend to proof usefulness and reliability of the probabilistic

calculation method which was developed for steam explosion multiphase flow simulation [6].

Mathematical Description

Every multiphase flow can be described with basic hydrodynamic equations for single

phase flow. These are

e continuity equation
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In order to treat a multiphase flow, the above equations (1,2,3) have to be written for every
single phase of multiphase flow separately, together with interfacial equations on the phase
boarders.

Such a system of equations with appropriate interfacial conditions is unsolvable even for
single phase flow with a high value of Re number. Solving them for multiphase flow where the
separate set of equations (1,2,3,4) together with their boundary conditions is valid only in a
region, which is confined to moving phase borders in a specific period of time, is only harder.
Therefore the equations (1,2,3,4) with instantaneous local values have to be replaced with
averaged equations. Most commonly time or spatial averaging are used, which have some
disadvantages because the accuracy is very much dependent on the size of reference time or
spatial interval respectively. To avoid this weakness and enhance accuracy we used the
statistical averaging.

Using statistical averaging, the physical quantities from equations (1,2,3,4) are averaged
over an ensemble of imaginary samples. The indication of a separate phase is marked with a
characteristic function Xj. If the sample is taken from phase k, the characteristic function Xk
obtains logical value 1 or logical value 0 in opposite situations:
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This imaginary sampling is repeated. In the limit, when the number of imaginary samples tends
to infinity, the probability of presence for a separate phase k is obtained.
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In order to get probabilistic equations (7,8,9) the equations (1,2,3) have to be multiplied with the
characteristic function Xk and then averaged over the ensemble. Instead of instantaneous local
quantities the averaging quantities are set in the equations together with presence phase
probability @ for a separate phase:

e continuity equation
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e cnergy equation
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The disadvantage of described procedure is the formation of cofluctuation tensors where
deviations from averaged physical quantities are collected. In this case they are denoted under
the terms Ck, My and Ej, whereas I'x describes the interfacial mass transport. The real art of
presented method is determination of cofluctuation tensors. Because it is impossible to calculate
them analytically, they have to be evaluated with a suitable probability distribution [8].
To complete set of equations, one considers the fact that sum of all presence phase
probabilities is always 1

n = 10
Sa(r)-1 (10)
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and the pressure is equal in all phases

p,=p,=...=p,=D . (11)

The system of equations in now completed. Boundary and initial conditions will be shown later
in the text.

Methods of Solution

The geometry of RPV lower plenum required the use of spherical coordinates. Because
of the axysymmetry we were able to reduce the mathematical description to two dimensions.
Fully developed equations in spherical coordinate system have now acquired a much more
exacting form:

e continuity equation
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e cnergy equation
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To perform calculation of all physical quantities in the equations (12,13,14,15) one needs to
developed corresponding algorithm. For this purpose the continuity equation has to be
transformed to a different form. When continuity equation is rewritten for all present phases
together as a sum of the particular continuity equations (7) and equation (10) is considered, the
time derivative of phase probabilities is :

n % a 7 (16)

Moreover, the continuity equations can be simplified if we estimate the size of total density
derivative realistically.
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The derived form of the continuity equation:
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is now coupled to momentum equation (7) and fully developed. This equation (19) conform
pressure field to an already calculated velocity field so that both satisfy continuity equation.
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Initial and boundary conditions

Initial and boundary conditions complete the above hydrodynamic equations (12,13, 14,
15 and 19) into a fully defined mathematical problem. Geometry that was chosen for numerical
simulation is a simplification of realistic arrangement of RPV lower plenum equipment.



In a round basin of RPV lower
plenum there are already stratified
layers of 5 m’ of molten fuel UO2 and

5 m’ of molten steel. Because of much  melt U02
greater density (10960 kg/m3 [4]) of
the fuel, it layers at the bottom and

RPV wall

molten steel (5180 kg/m3 [2]) at the
top.

Initial temperature of molten
steel is 2000 K and the temperature of
molten fuel is 3200 K. Because of
axysymmetry, the problem is
simplified to two dimensions. The
numerical mesh has to cover only a
half of the containment cross section.

To solve successfully the

melt steel 7

Figure 2: Initial conditions of multiphase mixture

equations (12,13,14,15 and 19), the boundary conditions are also important. The figure 3 shows
how they are defined around whole calculating area.

Conclusions

This paper presents a mathematical
model with derivation of multiphase
probabilistic equations together with initial
and boundary conditions for a specific
problem. The method was wused before
successfully to simulate behavior of a
multiphase mixture during the premixing
phase of steam explosion [9]. The
mathematical problem was solved using
Alternating Direction Implicit scheme in the
case of elliptic pressure equation (19) and
Lax-Wendroff scheme in case of time
depended continuity (12), momentum
(13,14) and energy (15) equation.

In the presented problem, we seek the
numerical solution in same direction, although
the strong convective movement of
multiphase mixture is dominant. Successful
simulation of the cooling problem would
confirm the developed probabilistic method
for multiphase treatment and numerical tools
for its successful solving.

Figure 3: Boundary conditions of numerical
mesh



Nomenclature

Latin Greek

cp heat capacity o presence probability
C cofluctuation tensor r mass generation

E cofluctuation tensor 0 cylindrical coordinate
g gravity /8 thermal conductivity
h enthalpy \4 kinematic viscosity
M cofluctuation tensor T shear tensor

p pressure

q heat generation Subscript

r radial coordinate

t time k phase index

T temperature i interface index

\% velocity r vector component

X characteristic function 0 vector component

Reference

[1] M. Berman, D. V. Swenson, A. J. Wickett: An Uncertainty Study of PWR Steam
Explosion, NUREG/CR-3369 SANDS83-1438 R1, Sandia National Laboratories, May
1984.

[2] MELCOR Code Development Group: MELCOR Computer Code Manuals Version
1.8.3, Volume 2: Reference Manuals, Sandia National Laboratories, July 1994.

[3] CRC Handbook of Chemistry and Physics, 63" Edition, CRC Press, Inc., Boca Raton
FL 1982.

[4] D. L. Hegrman, G. A. Reymann, and R. E. Mason: MATPRO VERSION 11 (Revision
1) A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor
Fuel Road Behavior, NUREG/CR-0497 and TREE-1280 Rev.1, EG&G Idaho, Inc.,
Idaho Falls, February 1980.

[S]  A. Stritar, D. Bosnar, L. Fabjan, M. GregoriC, R. Isteni¢: Zbirka podatkov o jedrski
elektrarni Krsko, 1JS-DP-5356, Institut "Jozef Stefan" Ljubljana, Slovenia, Dec. 1988.

[6] M. Leskovar, J. Marn: An Attempt at Describing Multiphase Flow by Probabilistic
Ensemble Averaged Equations, Annual Meeting of NSS '94, Rogaska Slatina,
Slovenia, September 18-21, 1994, Proceedings (1994), ISNB 961-90004-6-3,
pp. 343-348.

[7] Y. Molodtsof, D.w. Muzyka: General Probabilistic Multiphase Flow Equations for
Analyzing Gas-Solids Mixtures, International Journal of Engineering Mechanics, 2(1),
1989, pp. 1-24.



[8] J. Marn, M. Leskovar: Simulation of High Temperature Molten Fuel Coolant Mixing,
Fluid Engineering Division Summer Meeting 1996, July 7-11, 1996, San Diego,
California, Proceedings (1996), pp. 161-165.

[9] J. Marn, M. Leskovar, A. Horvat: Evaluation of Steam Explosion (ESE): Premixing,
Fluid Engineering Division Summer Meeting 1996, July 7-11, 1996, San Diego,
California, Proceedings (1996), pp. 167-172.



