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Abstract

An alternate approach based on hierarchic modeling is proposed to simulate fluid and heat flow in heat exchangers.

On the first level, the direct simulations have been performed for the geometry that is similar to a segment of the exam-

ined heat sink. Based on the obtained results, the Reynolds number dependencies of the scaling factors f and StPr2/3

have been established. On the second level, the integral model of the whole heat sink has been built using the volume

averaging technique (VAT). The averaging of the transport equations leads to a closure problem. The direct model

Reynolds number dependencies f and StPr2/3 have been used to calculate the local values of the drag coefficient bCd

and the heat transfer coefficient b#, which are needed in the integral model. The example calculations have been per-

formed for 14 different pressure drops D�p across the aluminum heat sink. The whole-section drag coefficient Cd and

Nusselt number Nu have been calculated and compared with the experimental data [M. Rizzi, M. Canino, K. Hu, S.

Jones, V. Travkin, I. Catton, Experimental investigation of pin fin heat sink effectiveness, in: Proc. of the 35th National

Heat Transfer Conference Anaheim, California, 2001]. A good agreement between the modeling results and the exper-

iment data has been reached with same discrepancies in the transitional regime. The constructed computational algo-

rithm offers possibilities for geometry improvements and optimization, to achieve higher thermal effectiveness.
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1. Introduction

Heat exchangers are one of the basic industrial com-

ponents and different variations of their form have been

extensively studied (e.g. Žukauskas et al. [1], Kays and

London [2], and Kakac [3]). In the past, the emphasis

was on experimental work due to absence of today�s
computational power. The nature of experimental work

enabled researchers to include in their studies only a few

heat exchanger geometries, slightly varying geometry

parameters. Furthermore, the flow conditions were lim-

ited by available experimental setups. Compared to
ed.
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Nomenclature

Af =Vf/l, fluid flow cross-section

Ag =W Æ L, bottom surface

Ao =pdh, wetted surface

Amax = lminh, cross-section with maximum

velocity

c specific heat

Cd drag coefficient

d diameter of pin-fins

dh =4Vf/Ao, hydraulic diameter

dt timestep

f friction factor

G mass flow rate

h height of the pin-fins

H height of the heat sink

Hb height of the base plate

Ig specific internal heat generation rate

l pitch in the streamwise direction

lmin minimum distance between two pin-fins (in

the present case 45� to the stream direction)

L length of the heat sink

N number of numerical nodes in the direct

model

Nu Nusselt number

p pressure

Pr Prandtl number

Q heat flow

Re Reynolds number based on hydraulic

diameter

S =Ao/V, specific surface

St Stanton number

T temperature

T0 initial temperature

Tg temperature at bottom, z = �Hb position

Tif temperature at the fluid-base interface and

the solid-base interface, z = 0 position

Tin temperature at inflow, x = 0 position

Tout temperature at outflow, x = L position

u velocity in the streamwise direction

m velocity

m 0 characteristic velocity scale of large eddies

mmax velocity in the minimum cross-section (in the

present case 45� to the stream direction)

V volume

w pitch in the horizontal spanwise direction

W width of the heat sink

x streamwise coordinate

y horizontal spanwise coordinate

z vertical spanwise coordinate

Greek symbols

a volume fraction

g Kolmogorov scale

k thermal diffusivity

l dynamic viscosity

q density

# local heat transfer coefficient

Subscripts/superscripts

b solid base-plate

f fluid phase averaged variable

s solid phase averaged variable

sf solid–fluid interface

x streamwise direction

y horizontal spanwise direction

z vertical spanwise direction

Symbols

� whole-section values
^ integral model values
* periodic residual part in the direct model
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numerical analysis, these disadvantages of experimental

work did not allow researchers to explore a wide range

of parameters in order to find an optimal geometry.

They rather limited the engineers� choice to well-tested

and proven designs (Hesselgreaves [4]).

In the last 20 years, numerical approaches and meth-

ods, originally developed for the aerospace industry,

have been increasingly employed to simulate processes

in heat exchangers in order to find new designs for

emerging technological needs. Pioneering work in the

heat exchanger modeling was done in the late 70s by

Meyder [5], Launder and Massey [6] and Antonopoulos

[7], to name just a few, who performed two-dimensional

simulations of fluid and heat flow in a segment of a heat

exchanger using early RANS models. Today, due to
extraordinary fast development of computer hardware,

numerical simulations of a whole heat exchanger are al-

ready possible. Nevertheless, a question of turbulent

flow simplifications remains an open issue. Namely, di-

rect simulations of fluid and heat flow through a heat ex-

changer still cannot be performed, as the required

computational resources are not available yet. There-

fore, different turbulence models have to be applied to

correctly predict fluid flow and heat transfer. In their re-

cent work, Barsamian and Hassan [8] used a large-eddy

simulation model to capture the turbulent part of the

fluid motion.

In the present paper, authors propose an alternative

approach based on hierarchic modeling in which the

model and its computation are split onto two distinct



Fig. 1. Heat sink of an electronic chip—simulation domain of

the integral model.
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levels. On the first level, three-dimensional direct simula-

tions of fluid and heat flow in a geometry similar to a

heat exchanger segment are performed to study local

thermo-hydraulic behavior. Based on the calculated

three-dimensional velocity and temperature distribu-

tions, the local values of drag and heat transfer coeffi-

cients are determined. On the second level, an integral

model, which uses the calculated local coefficients as in-

put parameters, is applied to simulate heat transfer proc-

esses in a whole heat exchanger.

The use of the two-level hierarchic modeling ap-

proach has some clear advantages. Once local values

of drag and heat transfer coefficients are calculated

and mapped, generalized form of the integral model al-

lows us to unify heat transfer calculation techniques for

different kinds of heat exchangers and their structures.

The case-specific geometrical arrangements, material

properties and fluid flow conditions enter the integral

calculation algorithm only as a series of precalculated

coefficients. As these computational most demanding

terms of momentum and heat exchange are determined

on the separate level, the integral code is fast running,

capable to accurately predict the heat flow for a whole

heat exchanger in less than a minute.

In the present study, the described hierarchic mode-

ling technique is applied to an electronic chip heat sink.

The problem and therefore the motivation for current

analysis is related to electronic chips� speed that is seri-

ously limited by the thermal power they produce. As a

consequence, electronic chips have to be intensively

cooled using specially designed heat exchangers, sub-

merged into air or water flow (Fabbri [9]). In our case

the internal heat exchanging structure is made from high

thermal conductive aluminum (Al) and exposed to air

cross-flow.

The obtained simulation results are compared with

the available experimental data (Rizzi et al. [10]). The

comparison demonstrates the ability of the proposed

hierarchic approach to reliably predict thermal condi-

tions in heat exchangers.
2. Hierarchic modeling using two levels of models

To demonstrate principles of the hierarchic modeling

approach, the geometry that was experimentally studied

in the Morrin–Martinelli–Gier Memorial Heat Transfer

Laboratory at University of California, Los Angeles

(Rizzi et al. [10]) has been used. The general geometry

arrangement of the heat sink is given in Fig. 1.

The length L and the width W of the heat sink are

11.43cm (4.5
00
), whereas the height H is 3.81cm (1.5’’).

The height of the conductive base plate, which connects

pin-fins, is 0.635cm (0.25
00
). The heat sink solid structure

that is exposed to air cross-flow, consists of 31 rows of

aluminum pin-fins in the streamwise (x-direction) and
in the transverse direction (y-direction). The diameter

of the pin-fins is d̂ ¼ 0:3175 cm (0.125
00
). The pitch-to-

diameter ratio in the streamwise direction l̂=d̂ is 1.06

and in the transverse direction ŵ=d̂ is 2.12.

The material properties have been also taken from

the considered experimental case. The heat sink was

from the cast aluminum alloy 195. A uniform inlet flow

profile has been assumed due to two rows of honeycomb

flow-straighteners that were placed upstream the test

section. The heat sink was heated from bellow by an

electric resistance heater. A thermal isolation layer

placed between the heater and the aluminum base had

set the isothermal conditions at the base bottom.

2.1. Volume averaging technique (VAT)

It has been estimated that approximately 180 millions

grid points would be needed to perform a direct simula-

tion of the whole heat sink for the Reynolds numbers of

interest. As the required number of grid points signifi-

cantly exceeds our computational capabilities, an inte-

gral model has been built using the volume averaging

technique (VAT) to model the whole heat exchanger.

Applying VAT to the transport equations, the flow var-

iables are averaged over a representative elementary vol-

ume (REV) of the heat sink. The averaged equations

have a form of porous media flow equations, where each

phase and its properties are separately defined over the

whole simulation domain. The volume averaging proce-

dure has been recently explained in detail by Horvat and

Catton [11] and will not be repeated here. Nevertheless,

it is important to note that applying VAT to the trans-

port equations, the variations of smaller dimension than

REV have to be modeled separately in a form of closure

relations. These relations require knowledge of drag and

heat transfer coefficients, which have been obtained

from the direct simulations.



Fig. 2. Simulation domain of the direct model.
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2.2. Scaling results between models

Kays and London [2] showed that momentum as well

as heat transfer between fluid flow and a heat exchanger

solid structure are similar for similar geometries at the

same Reynolds number:

Re ¼ 4
G
lf

l
A0

� �
; ð1Þ

where G is a mass flow rate.

In addition to Reynolds number, they proposed a

momentum-scaling factor:

f ¼ 2
qfDp

G2

A3
max

A0

� �
; ð2Þ

and a thermal-scaling factor:

StPr2=3 ¼ #Amax

cfG
cflf

kf

� �2=3

ð3Þ

as similarity variables. Considering these similarity var-

iables, direct simulations can be performed for any sim-

ilar geometry in order to scale the results to REV of the

investigated heat sink.

In the present case, the direct simulations have been

performed for one of geometries described in Kays

and London [2] and shown in Fig. 2. Its width in the

spanwise direction w/2 is 0.9525cm (3/8
00
) and the length

in the streamwise direction 2l is 1.905cm (3/4
00
). With the

pin-fin diameter d of 0.9525cm (3/8’’), the pitch-to-diam-

eter ratio l/d is 1.0 and w/d is 2.0, respectively. The height

h of the segment is 1.0cm. The values of pitch-to-diam-

eter ratio l/d and w/d are almost identical to the values

l̂=d̂ and ŵ=d̂ for the analyzed heat sink. Therefore, it is

safe to assume momentum and heat flow conditions sim-

ilar to those in REV of the heat sink.
3. Direct model

A separate model has been built to predict fluid and

heat flow in the geometry (Fig. 2) similar to the heat sink
REV. The CFX 5.5.1 commercial code has been used to

perform time dependent numerical simulations on the

level of the flow�s Kolmogorov scale:

g
lmax

¼ lf

qfm0lmax

� �3
4

: ð4Þ

No additional turbulence model has been introduced

into calculations. Following recommendations of Pope

[15], an estimation has been made that the velocity fluc-

tuations of energy containing eddies are m 0 � 0.1mmax.

The basic transport equations (mass, momentum and

thermal energy) that are incorporated in the CFX pack-

age are not repeated here as they can be found in any

classical fluid dynamics book (e.g. Bird et al. [16]). How-

ever, it should be noted that in order for the direct model

to correctly represent flow in the heat sink, periodicity

has to be imposed on the transport equations in the

streamwise direction.

3.1. Mass and momentum transport in the fluid flow

In the momentum transport equation, periodicity has

been achieved by separating an average pressure drop

Dp across the simulation domain from its residual part:

p ¼ p� � x
Dp
2l

� �
: ð5Þ

Thus, the momentum transport equation yields

otðqfmiÞ þ ojmjðqfmiÞ ¼ �ojp�dij þ ojðlfojmiÞ þ
Dp
2l

� �
di;x:

ð6Þ

Referring to Fig. 2, the following boundary conditions

for the fluid flow velocity have been assigned in the

direct model:

ð�l; y; zÞ () ðl; y; zÞ periodic boundary conditions;

ðx; 0; zÞ symmetric boundary conditions;

ðx;w=2; zÞ symmetric boundary conditions;

ðx; y; 0Þ slip boundary conditions;

ðx; y; hÞ slip boundary conditions;

ðxsf ; ysf ; zÞ no-slip boundary conditions at the

solid–fluid interface:

ð7Þ

The preset values of the pressure drop Dp across the sim-

ulation domain are summarized in Table 1. At initial

simulation time, zero velocity field has been assigned.

3.2. Heat transport in the fluid flow

To model conjugate heat transfer between the fluid

flow and the solid structure, an internal heat generation

in the solid phase has been assumed as a source of ther-



Table 1

Pressure drop Dp (Pa), initial temperature T 0 (�C) and solid

phase heat generation rate Ig (W/cm3) in the direct model

calculations

Case Dp (Pa) T 0 (�C) Ig (W/cm3)

1 0.04 23.0 0.2

2 0.08 23.0 0.2

3 0.16 23.0 0.2

4 0.32 23.0 0.2

5 0.64 23.0 0.2

6 1.28 23.0 0.2

7 1.50 23.0 0.2

8 2.00 23.0 0.2

9 2.56 23.0 0.2

10 5.12 23.0 0.2
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mal energy. Periodicity of the temperature field has been

introduced by subtracting an average temperature in-

crease DT along the simulation domain:

T ¼ T � þ x
DT
2l

� �
; where DT ¼ IgV s

cfG
: ð8Þ

The energy transport equation changes its form to

otðqfcfT
�Þ þ ojmjðqfcfT

�Þ ¼ ojðkfojT �Þ

� qfcfmj
DT
2l

� �
dx;j: ð9Þ

According to Eq. (8), the temperature increase DT de-

pends on the internal heat generation rate Ig in the solid

structure.

For the periodic part T* of the fluid phase tempera-

ture, the following boundary conditions have been set:

ð�l; y; zÞ () ðl; y; zÞ periodic boundary conditions;
ðx; 0; zÞ symmetric boundary conditions;
ðx;w=2; zÞ symmetric boundary conditions;
ðx; y; 0Þ adiabatic boundary conditions;
ðx; y; hÞ adiabatic boundary conditions;
ðxsf ; ysf ; zÞ temperature and heat flux match at the

solid–fluid interface:

ð10Þ

The preset values of the internal heat generation rate Ig
in the solid phase are summarized in Table 1. For all

simulations, the initial fluid temperature is set to

T0 = 23 �C.

3.3. Heat transport in the structure

In a same way as in the fluid phase, the periodicity of

the structure temperature field has been introduced by

separating the average temperature increase DT from

the temperature field T:

T ¼ T � þ x
DT
2l

� �
; where DT ¼ IgV s

c G
: ð11Þ
f

Inserting Eq. (11) in the energy transport equation for

the solid structure, the following form is obtained:

otðqs; csT
�Þ ¼ ojðksojT �Þ þ Ig: ð12Þ

For the periodic temperature T*, the model boundary

conditions have been prescribed as follows:

ð�l; y; zÞ () ðl; y; zÞ periodic boundary conditions;

ðx; 0; zÞ symmetric boundary conditions;

ðx;w=2; zÞ symmetric boundary conditions;

ðx; y; 0Þ adiabatic boundary conditions;

ðx; y; hÞ adiabatic boundary conditions;

ðxsf ; ysf ; zÞ temperature and heat flux match at the

solid–fluid interface:

ð13Þ

The initial temperature of the solid structure has been

set to the same initial temperature as the fluid phase:

T0 = 23 �C.
4. Integral model of the heat sink

The integral model of the whole heat sinks is based

on the volumetric averaging technique (VAT) that aver-

ages flow variable over a representative elementary vol-

ume (REV) of the heat sink. The derivation of

volumetrically averaged transport equations is presented

below in Sections 4.1–4.4. The integral model variables

are marked with ‘‘^’’.

To solve the averaged form of transport equations

with related boundary conditions, a separate numerical

code has been constructed. The code, named POMIC

(POrous Media Integral Code), is based on discretiza-

tion principles of the finite volume method [12]. For a

solver, the preconditioned conjugate gradient method

[13] has been utilized. Further details on the code algo-

rithm can be found in [14].

4.1. Mass and momentum transport in the fluid flow

In the integral model, the momentum transport equa-

tion has been developed using an additional assumption

that the volume average velocity through the heat sink is

unidirectional: m̂ ¼ fû; 0; 0g. As a consequence, the

velocity varies only transversely to the flow direction.

The pressure force across the entire simulation domain

is in balance with shear forces and with drag that origi-

nates from the fluid–solid interaction. As a result, the

momentum transport equation is reduced to

�âflfðoyoy ûf þ ozozûfÞ þ
1

2
bCdqf û

2
f
bS ¼ D�p

L
: ð14Þ

The boundary conditions for the integral model

equations attempt to represent the experimental setup



Table 2

Pressure drop D�p (Pa) over the whole heat sink, inflow

temperature T in (�C) and solid base bottom temperature T g

(�C) in the integral model calculations

Case D�p (Pa) T in (�C) T g (�C)

1 5.00 23.0 35.0

2 10.0 23.0 35.0

3 20.0 23.0 35.0

4 40.0 23.0 35.0

5 80.0 23.0 35.0

6 120.0 23.0 35.0

7 160.0 23.0 35.0

8 200.0 23.0 35.0

9 240.0 23.0 35.0

10 280.0 23.0 35.0

11 320.0 23.0 35.0

12 360.0 23.0 35.0

13 400.0 23.0 35.0

14 440.0 23.0 35.0
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described previously in Section 2. For the momentum

transport equation (14), no-slip boundary conditions

have been implemented at all four walls parallel to the

flow direction:

ûfð0; zÞ ¼ 0; ûfðW ; zÞ ¼ 0; ûfðy;0Þ ¼ 0; ûfðy;HÞ ¼ 0:

ð15Þ

The preset values of the whole-section pressure drop D�p
used in the calculations are summarized in Table 2.

4.2. Heat transport in the fluid flow

The energy transport equation for the fluid flow has

also been developed using the unidirectional velocity

assumption. The temperature field in the fluid results

from a balance between thermal convection in the

streamwise direction, thermal diffusion and the heat

transferred from the solid structure to the fluid flow.

Thus, a differential form of the energy equation for the

fluid is

âfqfcf ûfoxbT f ¼ âfkfðoxoxbT f þ oyoy bT f þ ozozbT fÞ

� #̂ðT̂ f � T̂ sÞbS : ð16Þ

For the fluid-phase energy transport equation (16), the

simulation domain inflow and the bottom wall have

been taken as isothermal:bT fð0; y; zÞ ¼ T in; bT fðx; y; 0Þ ¼ bT ifðx; y; 0Þ; ð17Þ

whereas adiabatic boundary conditions have been pre-

scribed assumed elsewhere:

oxbT fðL; y; zÞ ¼ 0; oy bT fðx; 0; zÞ ¼ 0;

oy bT fðx;W ; zÞ ¼ 0; ozbT fðx; y;HÞ ¼ 0: ð18Þ
The inflow boundary values T in of the fluid temperaturebT f are summarized in Table 2. It has to be noted that the

interface temperature bT if is influenced by a heat distribu-

tion in the conductive base-plate and is therefore posi-

tion dependent.

4.3. Heat transport in the structure

The heat sink structure in each REV is not connected

in the horizontal directions (Fig. 1). As a consequence,

only thermal diffusion in the vertical direction is in bal-

ance with the heat leaving the structure through the

fluid–solid interface, whereas thermal diffusion in the

horizontal directions can be neglected. This simplifies

the energy equation for the solid structure to

0 ¼ âs; ksozozbT s þ #̂ðbT f � bT sÞbS : ð19Þ

For the solid-phase energy transport equation (19), the

bottom wall has been prescribed as isothermal, whereas

the top wall has been set as adiabatic:

bT sðx; y; 0Þ ¼ bT ifðx; y; 0Þ; ozbT sðx; y;HÞ ¼ 0: ð20Þ
4.4. Heat transport in the base-plate

In the solid base-plate, thermal diffusion is the only

mechanism of heat transfer. As there is no heat transfer

between the solid and the fluid phase, except at the

upper boundary, the energy transport equation reduces

to

0 ¼ ksðoxoxbT b þ oyoy bT b þ ozozbT bÞ: ð21Þ

The boundary conditions for the solid base-plate show

the coupled nature of heat transfer between the fluid

flow and the solid structure (Eqs. 16 and 19), and the

base-plate (21). Namely, the heat flux between the fluid

flow and the solid phase on one side, and the base-plate

on the other side must be equal:

ksozbT bðx; y; 0Þ ¼ âfkfozbT fðx; y; 0Þ þ âsksozbT sðx; y; 0Þ:
ð22Þ

The calculated base temperature bT b at (x,y, 0), is equal

to bT if which is used as the boundary condition (17)

and (20) in the energy transport equations (16) and

(19), respectively. At the bottom of the base-plate, iso-

thermal boundary conditions have been prescribed:

bT bðx; y;�HbÞ ¼ T g; ð23Þ

whereas the horizontal walls have been taken as

adiabatic:

oxbT bð0; y; zÞ ¼ 0; oxbT bðL; y; zÞ ¼ 0;

oy bT bðx; 0; zÞ ¼ 0; oxbT bðx;W ; zÞ ¼ 0: ð24Þ
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For the performed simulations, the bottom boundary

values T g of the base-plate temperature bT b are summa-

rized in Table 2.
5. Calculations and results

5.1. Direct model

First, the direct simulations of heat and fluid flow in

the geometry (Fig. 2) similar to REV have been per-

formed using the CFX 5.5.1 simulation program. The

preset model parameters (pressure drop Dp, initial tem-

perature T0 and internal heat generation rate Ig) for each

simulated case are summarized in Table 1. The numeri-

cal details of the simulations, like timestep and number

of computational nodes, are given in Table 3.

Fig. 3 shows a qualitative representation of velocity m
(left) and temperature T* (right) in the fluid phase for the

case 6, with the pressure drop Dp of 1.28Pa imposed

over the direct model simulation domain. The arrows

in Fig. 3 (left) indicate the direction of the flow. Blue

(dark) color of arrows denotes low velocity regions

and red (light) color high velocity regions. The fluid tem-

perature in Fig. 3 (right) is also represented by a color
Table 3

Calculated Reynolds number Re, timestep dt (s) and number of

node points N used in the direct model calculations

Case Re dt (s) N

1 129 0.02 5769

2 210 0.01 5769

3 324 0.005 10,976

4 477 0.001 14,539

5 717 0.0005 31,904

6 931 0.0008 102,967

7 1031 0.0006 104,648

8 1222 0.0004 155,741

9 1408 0.0002 207,596

10 2083 0.0002 409,109

Fig. 3. Qualitative picture of the velocity field (left) and the temperat

Dp = 1.28Pa; case 6 in Table 1.
scale, where low temperature regions are blue (dark),

and high temperature regions are red (light).

During direct simulations of fluid and heat flow, the

fluid average velocity

uf ¼
1

V f

Z
bV f

udV ; ð25Þ

the fluid average temperature

T �
f ¼

1

ufV f

Z
bV f

uT � dV ; ð26Þ

and the solid average temperature

T �
s ¼

1

V s

Z
bV s

T � dV ; ð27Þ

were recorded at each timestep for further statistical

evaluation. Simulations were terminated, when recorded

values showed statistical equilibrium in turbulent flow

(i.e. average values did not change for more than 1%

over the next 100 records).

Average values and standard deviations of recorded

velocity uf, and temperatures T �
f and T �

s are presented

in Fig. 4. It should be noted that the absolute values

of velocity and temperatures are not important in this

case, since the only purpose of the direct model is to cal-

culate local drag and heat transfer coefficients for the

integral model, bCd and b#. Namely, the correct values

of local drag and heat transfer coefficients depend solely

on relations between the pressure drop Dp, velocity uf,

and temperatures T �
f and T �

s .

Fig. 4 shows that the fluid average velocity uf in-

creases with the pressure drop Dp in a quadratic manner.

As the solid average temperature T �
s stays almost con-

stant, the fluid average temperature T �
f increases in a lin-

ear manner. Higher fluid temperatures T �
f indicate that

increasing velocity (or Reynolds number) intensifies

mixing inside the fluid phase, which improves heat trans-

fer from the solid to the fluid phase. Fig. 4 also reveals

the transition to turbulence, which may be observed at

pressure drop Dp � 1.5Pa. The transition is evident by

a sudden increase in the calculated standard deviations

of the fluid average velocity uf and temperature T �
f .
ure field in the fluid (right) calculated with the direct model for
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The transition also changes the slope in the linear

relation between the pressure drop Dp and the fluid aver-

age temperature T �
f .

The similarity variables like Reynolds number Re,

the momentum scaling factor f and the thermal scaling

factor StPr2/3 have been determined from the calculated

values of the fluid average velocity uf, the fluid average

temperature T �
f and the solid average temperature T �

s .

The expression for the Reynolds number

Re ¼ qfufdh

lf

ð28Þ

is derived from (1) by introducing the relation G = qfufAf

and the definition for the hydraulic diameter dh = 4Vf/

Ao. Using the same expression for mass flow rate G,

the momentum scaling factor (2) can be written as

f ¼ 2
Dp
qfu

2
f

A3
max

AoA
2
f

 !
: ð29Þ

Furthermore, introducing the relations # ¼ IgV s=
ðT �

s � T �
f ÞAo, the thermal scaling factor (3) is trans-

formed to

StPr2=3 ¼ Ig
cfqfufðT �

s � T �
f Þ

AmaxV s

AfAo

� �
cflf

kf

� �2=3

: ð30Þ

Fig. 5 shows the momentum scaling factor f as a

function of Reynolds number Re in comparison with

Kays and London data [2]. The agreement between the

CFX results and the experimental data is good for the

entire range of tested Reynolds numbers, although there

is still room for improvement. The transition to turbu-

lence at Re � 800 is expressed stronger than in the exper-

imental results. It is believed that this is a consequence

of the applied boundary conditions, which redirect the
oscillations in a single plane, parallel to a boundary.

Fig. 6 presents the calculated thermal scaling factor

StPr2/3 as a function of Reynolds number Re. The calcu-

lated results agree perfectly with the experimental data

of Kays and London [2].

5.2. Scaling

Once the momentum scaling factor f (29) and the

thermal scaling factor StPr2/3 (30) have been determined

as functions of Reynolds number Re from the direct

model results (Figs. 5 and 6), one can calculate the local

drag coefficient bCd and the local heat transfer in the inte-

gral model. The local drag coefficient is expressed as
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bCd ¼ f
bA2

f
bVbA3

maxl̂

 !
; ð31Þ

where bAf , bV , bAmax and l̂ are geometrical parameters of

the integral model REV. In a similar way, the local heat

transfer coefficient for the integral model can be ob-

tained from the thermal scaling factor StPr2/3:

#̂ ¼ ðStPr2=3ÞbRePr1=3 kf
d̂h

� � bAfbAmax

 !
: ð32Þ
Fig. 8. Temperature field in the airflow (bT f ); case 9 in Table 2.

0.07

POMIC calculation
Rizzi et al. (2001), 50W
Rizzi et al. (2001), 125W
5.3. Integral model

Using calculated distributions of the local drag coef-

ficient bCd (31) and the local heat transfer coefficient #̂
(32) as functions of local Reynolds number bRe, the

velocity and temperature fields have been calculated

for the whole heat sink. The calculation parameters

are given in Table 2.

As an example, Fig. 7 shows a cross-sectional view of

the temperature field in the solid structure and in the

base-plate for the case 9 (Table 2). Fig. 8 presents

the temperature field in the airflow for the same case.

The temperatures are in Celsius scale and the cross-

sections are taken at the middle of the simulation

domain, ŷ ¼ 0:5W . As may be observed in Fig. 8, the

lowest temperatures in the airflow occur at the beginning

of the heat sink (on the left side). The temperature raises

as the air passes through the heat exchanging structure.

Therefore, the highest temperatures in the airflow are

expected at the exit (on the right side). The temperature

field in the solid structure is more vertically stratified

(Fig. 7), as the heat enters the structure from the bottom.

Therefore, the lowest temperature in the solid phase is in

the upper left corner and the highest at the bottom, in

the base-plate. Figs. 7 and 8 demonstrate that, although

the integral model is relatively crude, it can provide a de-

tailed picture of heat transfer conditions in the heat sink.

To verify the results of the proposed two-level algo-

rithm and to raise confidence in the hierarchic modeling
Fig. 7. Temperature in the solid structure and the base-plate

(bT s and bT b); case 9 in Table 2.
procedure, the whole-section drag coefficient Cd and

Nusselt number Nu have been calculated from the veloc-

ity and temperature fields of the integral model and

compared to the available experimental results of Rizzi

et al. [10]. The whole-section drag coefficient is calcu-

lated as

Cd ¼ 2
D�p
qf�u

2
f

V

AoL

� �
; ð33Þ

and the whole-section Nusselt number as

Nu ¼ Q�dh

kfðT g � T inÞAg

; ð34Þ

where Q ¼ qfcf�ufðT out � T inÞAf . The whole-section val-

ues of �uf , T in and T out are obtained with averaging of

the integral model values ûf and bT f .

The results are presented in Figs. 9 and 10 as a func-

tion of whole-section Reynolds number that is defined as

Re ¼ qf�uf�dh=lf . The comparison shows good agreement

between the simulation results and the experimental

data, which were taken at the lowest thermal power of
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Fig. 9. Whole-section drag coefficient Cd as function of

Reynolds number Re.
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50W. As the buoyancy has not been included in our

modeling procedure, the results show somewhat larger

discrepancies at thermal power of 125W and 220W.

This indicates that at higher power the additional effect

of thermal stratification in the airflow becomes more

important. Another issue that requires further attention

is the transition region ðRe � 800Þ. As shown in Fig. 9,

the sudden increase in the calculated whole-section drag

coefficient Cd is not confirmed by the experimental data.

Nevertheless, the comparisons in Figs. 9 and 10 demon-

strate that the hierarchic modeling procedure is able to

provide reliable fluid and heat flow data in conjugate

heat transfer situations.
6. Conclusions

The present paper describes an effort to develop a

hierarchic modeling procedure for heat exchangers. As

the direct simulation of fluid and heat flow in the whole

heat exchanger would require currently unreachable

computation resources, a technique has been developed

and presented that splits the problem onto two levels.

It has been proposed that on the first level, the direct

approach can be used to model processes in a represent-

ative elementary volume (REV) of a heat exchanger.

Based on the direct simulation results for the geometry

similar to REV, the momentum scaling factor f and

the thermal scaling factor StPr2/3 were obtained as func-

tions of Reynolds number. These scaling factors were

then used to obtain local values of the drag coefficientbCd and the heat transfer coefficient #̂ that are needed

in the second level model.

In the present work, the hierarchic modeling proce-

dure was demonstrated on an electronic chip heat sink
for which first-hand experimental data were available

[10]. The geometry for the first level model was taken

from Kays and London [2]. In order to solve the system

of transport equations with the prescribed boundary

conditions, the pressure and temperature fields were

transformed into the periodical form. The direct simula-

tions of the periodic fluid and heat flow were performed

with the CFX 5.5.1 software package.

On the second level, the integral model of the whole

heat sink was built. For that purpose the volume averag-

ing technique (VAT) was employed in order to model

the heat sink cross-flow as porous media flow. As the

averaging of transport equations leads to a closure prob-

lem, the local values of the drag coefficient bCd and the

heat transfer coefficient #̂ were used to close the integral

model equations. Based on the described procedure, the

numerical program POMIC was built and then used for

the heat sink calculations.

From the POMIC calculations, the temperature fields

in the airflow and the solid structure were obtained. The

calculated temperature fields demonstrate that the hier-

archic modeling is able to predict local features of fluid

and heat flow, although the details of the modeled flow

were lost due to the averaging of transport equations on

the second modeling level. The whole-section drag coef-

ficient Cd and Nusselt number Nu were also determined

as functions of Reynolds number and compared with the

experimental data of Rizzi et al. [10] to verify the com-

putational model and to validate the numerical code.

The comparison showed a good agreement between

the simulation results and the experimental data taken

at the lowest thermal power (50W), where stratification

is not significant. Still, the numerical results display

more distinctive drag coefficient increase in the transi-

tion region than the experimental data. This is believed

to be a consequence of inadequate boundary conditions

in the direct model.

The presented results demonstrate that the proposed

hierarchic approach is an appropriate strategy for calcu-

lation of complex transport phenomena in heat exchan-

ger where thermal conductivity of the solid structure has

to be taken into account. The performed calculations

also show that the developed two-level modeling algo-

rithm is fast and it requires modest computational re-

sources. Yet, it provides sufficiently accurate results to

be applicable in future optimization calculations of heat

exchanger morphologies.
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