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Transient numerical simulations of fluid and heat flow are performed for a number of heat

exchanger segments with cylindrical and ellipsoidal form of tubes in a staggered arrange-

ment. Based on the recorded time distributions of velocity and temperature, time-average

values of Reynolds number, drag coefficient, and Stanton number are calculated. The drag

coefficient and the Stanton number are smaller for the ellipsoidal tubes than for the cylin-

drical tubes. With an increasing hydraulic diameter, the difference between the two forms of

tubes diminishes. To validate the selected numerical approach, the calculated time-average

values are compared with experimental data. The time-average values are further used to

construct the drag coefficient and the Stanton number as polynomial functions of Reynolds

number and hydraulic diameter. The polynomial functions obtained are to be used as input

correlations for a heat exchanger integral model.

1. INTRODUCTION

The heat transfer industry, especially the electronic packaging sector, requires
precise and fast prediction of drag and heat transfer for different shapes of heat
exchanging surfaces. In general, these can be assessed by experimental testing
(e.g., [1–4]) and by numerical calculations (e.g., [5–13]). Over the years, a lot of
experimental as well as modeling work has been done in the area of heat exchangers.
We mention only a few works, as it is impossible to justly evaluate work of all inves-
tigators who made important contributions.

Due to the nature of experimental work, which enables researchers to analyze
only a few heat exchanger geometries with slightly varied geometry parameters, the
experimental investigation of all prototype geometries is not feasible. As an afford-
able substitute, numerical approaches and methods have been increasingly employed
to simulate processes in heat exchangers in order to find new designs for emerging
technological needs. Nevertheless, the direct numerical simulation of the heat
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transfer processes in heat exchangers is still computationally too demanding. There-
fore, significant simplifications, especially in the turbulence modeling and the wall
effect treatment, are necessary.

Horvat and Mavko [14] used an alternative approach based on hierarchic mod-
eling, which was proposed by Patankar and Spalding [15]. In implementing this
approach, the model and its computation are split onto two distinct levels. On the first
level, transient three-dimensional numerical simulations of fluid and heat flow in a
geometry similar to a heat exchanger segment are performed to study local thermohy-
draulic behavior. Based on the calculated three-dimensional velocity and temperature
distributions, local values of the drag coefficient and of the heat transfer coefficient are
determined. On the second level, an integral model [16], which uses the calculated local
coefficients as input parameters, is applied to simulate heat transfer processes in a
whole heat exchanger. The use of this two-level hierarchic modeling approach has some
clear advantages. As these computationally most demanding terms of momentum and
heat transport are determined on a separate level, the integral code is fast running, but
still capable of accurately predicting the heat flow for a whole heat exchanger.

In this article, we present computational results of fluid and heat flow in heat
exchanger segments with cylindrical and ellipsoidal forms of tubes in a staggered
arrangement. The numerical simulations cover laminar, transitional, as well as
turbulent flow regimes. To adequately model the fluid and heat flow phenomena in
the heat exchanger segments, transient numerical simulations with special near-wall
treatment were performed. These calculations were used to obtain time-average values
of drag coefficient and Stanton number. Based on these values, we constructed drag
coefficient Cd and Stanton number St as polynomial functions of Reynolds number
and a geometric parameter. As the most appropriate geometric parameter, a hydraulic

NOMENCLATURE

a and b maximum and minimum radii of the

ellipsoidal tubes

Af fluid flow cross section ð¼Vf =2lxÞ
Ao wetted surface

c speed of sound

cp specific heat

Cd drag coefficient

Cd time-average drag coefficient

d diameter

dt timestep

dh hydraulic diameter ð¼4Vf =AoÞ
F1 blending function in the SST model

h height of REV

k turbulence kinetic energy

l pitch between tubes

p pressure

Pr Prandtl number

Re Reynolds number

REV representative elementary volume

St Stanton number

St time-average Stanton number

t time

tscale average time needed for a flow

particle to pass the simulation

domain

T temperature

u streamwise velocity

v velocity

Vf fluid volume in REV

yþ nondimensional wall distance

e turbulence dissipation rate

m dynamic viscosity

q density

x turbulence frequency

Subscripts and Superscripts

t turbulence model variable

wall wall conditions

x streamwise direction

y horizontal spanwise direction

z vertical spanwise direction
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diameter dh was chosen. The calculated values of Cd and St also enabled us to compare
aerodynamic and thermal efficiency of cylindrical and ellipsoidal tube bundles.

The constructed polynomial surfaces Cd and St are probably not a unique
solution of the least-squares approximation of the numerical results. Certainly, more
numerical results would improve the confidence of the constructed functions. Never-
theless, the obtained polynomial functions Cd and St represent reliable input data
for the heat exchanger integral model [16], which was the main objective of the
numerical analysis performed.

2. GEOMETRIC CONSIDERATIONS

The numerical calculations were performed for a representative elementary vol-
ume (REV) of a tube bundle with staggered arrangement. It is colored gray in
Figure 1. The size and shape of the REV were selected after a fair amount of testing.
We took into consideration the error arising from limiting the simulation domain,
overall flow dynamics in the simulation domain, and needed computational
resources. Based on the tests performed, it was concluded that in order to get rep-
resentative data, it is more important to simulate longer time intervals than to
enlarge the simulation domain.

In the case of the cylindrical tubes the diameter was 3=8 in (9.525 mm). The cal-
culations were performed for four different geometries with different diagonal pitch-
to-diameter ratio: l=d ¼ 1.125, 1.25, 1.5, and 2.0. For each geometry, the REV height
h was equal to the diagonal pitch l. The analysis was limited to bundle arrangements
in which the pitch in the x direction, lx, is equal to the pitch in the y direction, ly.

The geometries with the ellipsoidal tubes were designed with a ratio 1:1.5
between the maximum and minimum radii (a and b). Furthermore, the size of the
tubes was fully defined with the requirement that the fluid volume Vf of the REV
has to be equal for the cylindrical and the ellipsoidal tubes:

Vf ; cyl ¼ Vf ; ell

hð2lxly � 0:25pd2Þ ¼ hð2lxly � pabÞ

a ¼
ffiffiffi
3

2

r
d

2
and b ¼

ffiffiffi
2

3

r
d

2

ð1Þ

Figure 1. Cross section of heat exchanger structure for l=d ¼ 1.25: cylindrical (left) and ellipsoidal (right)

forms.
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All together, eight different geometric models were built, four for the cylindri-
cal and four for the ellipsoidal form of tube cross sections. Figure 1 presents only
two of these geometries, with pitch-to-diameter ratio l=d ¼ 1.25. The hydraulic
diameter dh for the each geometry modeled is given in Table 1.

3. MATHEMATICAL MODEL

The commercial code CFX 5.7 was used to perform transient numerical simula-
tions of air flow and heat transfer in the REV. Due to relatively low flow speeds
(vmax < 0.1c), the incompressible flow model was selected. As the basic transport equa-
tions (mass, momentum, and thermal energy) in the CFX code can be found in any
classical fluid dynamics book (e.g., [17]), they are not repeated here.

The tube walls in the REV were treated as isothermal, with the temperature
Twall ¼ 35�C. To allow disturbances to propagate over the geometric limits of the
simulation domain, periodic boundary conditions were assigned in all three
directions for all other boundaries.

In order to model the flow consistently, periodicity had to be imposed on the
transport equations in the streamwise direction. In the momentum transport
equation, periodicity was achieved by separating an average pressure drop Dp across
the simulation domain from its residual part:

p ¼ p� � x
Dp

2lx

� �
ð2Þ

Thus, the momentum transport equation yields

qtðqviÞ þ qjvjðqviÞ ¼ �qjp
�dij þ qjðmqjviÞ þ

Dp

2lx

� �
di;x þ qjðmtqjviÞ �

2

3
qkdij ð3Þ

The preset values of pressure drop Dp across the simulation domain were the same
for the cylindrical and ellipsoidal forms of tube cross section. They are summarized
in Table 2.

Periodicity of the temperature field was introduced by subtracting an average
temperature increase DT along the simulation domain:

T ¼ T� þ x
DT

2lx

� �
ð4Þ

Table 1. Hydraulic diameters dh for all geometries with cylindrical and ellipsoidal form of

tube cross section

l=d Cylindrical form (cm) Ellipsoidal form (cm)

1.125 0.5824 0.5649

1.25 0.9424 0.9142

1.5 1.776 1.723

2.0 3.899 3.782
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The energy transport equation changes its form to

qtðqcpT�Þ þ qjvjðqcpT�Þ ¼ qjðkqjT
�Þ � qf cpvj

DT

2lx

� �
dx;j þ qj

mt

Prt
qjcpT�

� �
ð5Þ

Consequently, the isothermal boundary conditions are converted to

T�wall ¼ Twall � x
DT

2lx

� �
ð6Þ

In order to preserve validity of the assumption of constant material properties,
the average temperature increase was set to DT ¼ 1�C for all simulations.

The turbulence stresses and the turbulence viscosity mt were calculated with the
transient shear stress transport (SST) model, which was developed and improved by
Menter [18]. It is a combination of the k�e and the k�x models of Wilcox [19]. At
the wall, turbulence frequency x is much more precisely defined than turbulence
dissipation rate e. Therefore, the SST model activates the Wilcox model in the
near-wall region by setting the blending function F1 to 1.0. Far away from the wall,
F1 is 0.0, thus activating the k�e model for the rest of the flow field:

SST model ¼ F1 � ðk�x modelÞ þ ð1� F1Þ � ðk�e modelÞ ð7Þ

By switching between the two models, the SST model gives similar, if not even
superior performance than the low-Reynolds-number k�e models, but with much
greater robustness. More details on the SST model can be found in [20].

4. SIMULATION DETAILS

Three-dimensional numerical meshes were generated to perform the analysis.
They consisted of tetrahedrals and prisms, which were aligned with walls to better
approximate the boundary-layer structure. As numerical results can be grid
dependent, special care was taken to construct numerical grids with sufficient
resolution and uniformity. A basic criterion was the maximum nondimensional wall
distance yþof the first layer of grid nodes. During the simulations, the maximum yþ

did not exceed 2.0. The number of grid nodes used in each numerical simulation is
given in the Appendix.

Table 2. Imposed pressure drop Dp [Pa] over the simulation domain

l=d 1 2 3 4 5 6 7 8

1.125 2.5 5.0 10.0 20.0 40.0 80.0 160.0 —

1.25 0.5 1.0 2.0 4.0 8.0 16.0 24.0 32.0

1.5 0.125 0.25 0.5 1.0 2.0 4.0 6.0 8.0

2.0 0.015625 0.03125 0.0625 0.125 0.25 0.5 0.75 1.0
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In order to reduce the computational time required to reach thermal equilib-
rium, steady-state simulations on a coarser numerical mesh were performed first.
After thermal equilibrium was reached, the result files were used as initial conditions
for further transient numerical simulations. The time step for the transient calcula-
tions was based on an average time interval needed for a flow particle to pass the
simulation domain:

tscale ¼
2lx
uf

and dt ¼ tscale

80
ð8Þ

5. RESULTS

Numerical simulations of fluid and heat flow in the REV were performed for
cylindrical and ellipsoidal tubes in the staggered arrangement (Figure 1) with four
different pitch-to-diameter ratios. The imposed pressure drops Dp (Table 2) across
the REV generated the transient flow, which was in most cases unsteady. In order
to extract relevant statistical values of physical variables, the volumetric average
velocity,

uf ðtÞ ¼
1

Vf

Z
Vf

uðt; xiÞdV ð9Þ

and temperature,

Tf ðtÞ ¼
1

uf ðtÞVf

Z
Vf

uðt; xiÞTðt; xiÞdV ð10Þ

were recorded at each time step after statistical steady-state flow conditions were
reached. The length of the recording interval was decided on a case-to-case basis.
We tried to find a repeatable pattern of flow behavior. Therefore, the recording
intervals were from 1,200 to 4,750 time steps long. This means that the recording
interval was at least 150 times longer than the time required for an average flow par-
ticle to travel the length of the simulation domain (8).

Using the obtained velocity distributions uf ðtÞ and the temperature distribu-
tions Tf ðtÞ, the Reynolds number,

ReðtÞ ¼ quf ðtÞdh

m
ð11Þ

the drag coefficient,

CdðtÞ ¼
2Dp

qu2
f ðtÞ

Af

A0

� �
ð12Þ

and the Stanton number,

StðtÞ ¼ DT

Twall � Tf ðtÞ
Af

A0

� �
ð13Þ

time distributions were calculated for the each case. Further on, their time averages
Re, Cd , and St and their standard deviations SRe, SCd, and SSt were determined.
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5.1. Validation

To validate the presented numerical approach, the results obtained for one of
the cases were compared with the experimental data of Kays and London [2]. For the
comparison, we selected the geometry with the cylindrical form of tube cross section
and l=d ¼ 1.5. The calculated values of drag coefficient Cd and Stanton number St
were compared with the experimental values for a similar geometry with l=d ¼ 1.414
(Figures 2 and 3).

The comparison in Figures 2 and 3 shows good agreement between the
calculated and the experimentally obtained values of average drag coefficient Cd

and average Stanton number St for the whole range of Reynolds numbers Re.
The agreement demonstrates the correctness of the selected numerical approach. It
has also given us confidence to use the same methodology for other cases.

Figure 3. Comparison of the calculated average Stanton number St with the experimental data [2];

cylindrical form.

Figure 2. Comparison of the calculated average drag coefficient Cd with the experimental data [2];

cylindrical form.
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5.2. Drag Coefficient Functions

The time distributions of Reynolds number ReðtÞ and drag coefficient
CdðtÞwere obtained for both forms of tube cross section and for all the imposed press-
ure drops (Table 2). The collected statistical averages Re and Cd are given in Table 3 for
the cylindrical form and in Table 4 for the ellipsoidal form of tube cross section.

By using the least-squares approximation, the calculated values in Tables 3
and 4 enabled us to construct Cd for each form of tube cross section as a polynomial
function of Reynolds number Re and hydraulic diameter dh. For the cylindrical
form, the function

Cdðdh; ReÞ ¼ 0:2353þ 3:222 � 10�10d�4
h þ 1:348d

1=2
h

þ 64:47 Re
�1 � 1:855 � 10�5 Re� 2:118 � 10�9 Re

2 ð14Þ

was obtained. For the ellipsoidal form, we calculated the following function:

Cdðdh; ReÞ ¼ 0:03050þ 5:724 � 10�4d�1
h þ 0:8838d

1=2
h þ 64:30 Re

�1

� 5:826 � 10�4 Re
1=2 ð15Þ

Figures 4 and 5 present contour plots of the drag coefficient polynomials for
the cylindrical (14) and for the ellipsoidal (15) form of tube cross section.

Table 3. Reynolds number Re and drag coefficient Cd for the cylindrical form

l=d 1 2 3 4 5 6 7 8

1.125 Re 258 385 549 816 1,178 1,733 2,557 —

Cd 0.858 0.773 0.758 0.685 0.658 0.608 0.560 —

1.25 Re 266 397 590 865 1,248 1,870 2,328 2,841

Cd 0.616 0.554 0.501 0.467 0.448 0.400 0.386 0.3465

1.5 Re 321 473 692 1,019 1,489 2,169 2,746 3,258

Cd 0.590 0.542 0.507 0.468 0.439 0.414 0.387 0.366

2.0 Re 274 443 655 935 1,373 2,029 2,497 2,909

Cd 0.801 0.613 0.561 0.551 0.510 0.468 0.463 0.455

Table 4. Reynolds number Re and drag coefficient Cd for the ellipsoidal form

l=d 1 2 3 4 5 6 7 8

1.125 Re 403 604 871 1,233 1,963 3,081 4,543 —

Cd 0.321 0.285 0.275 0.276 0.218 0.176 0.162 —

1.25 Re 351 513 783 1,167 1,743 2,550 3,179 3,753

Cd 0.322 0.302 0.259 0.234 0.209 0.196 0.189 0.180

1.5 Re 422 670 1,025 1,553 2,312 3,396 4,255 4,957

Cd 0.311 0.247 0.211 0.184 0.166 0.154 0.147 0.144

2.0 Re 351 590 934 1,381 1,999 2,915 3,626 4,234

Cd 0.445 0.316 0.252 0.230 0.220 0.207 0.200 0.196
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The comparison of the contour plots in Figures 4 and 5 shows that Cd is lower
for the ellipsoidal form than for the cylindrical form of tube cross section. For a
given dh, Cd decreases monotonically with Re. If a value of Re is set, Cd has its

Figure 5. Drag coefficient approximation function (15) for the ellipsoidal form.

Figure 4. Drag coefficient approximation function (14) for the cylindrical form.

FLOW ACROSS A BUNDLE OF TUBES 707



minimum for a unique value of dh. This value of hydraulic diameter, dh� 0.012, is
roughly the same for both forms.

In Figures 6–9, the drag coefficient functions (14) and (15) for l=d ¼ 1.125,
1.25, 1.5, and 2.0 are compared with the discrete values of Cd (Table 3 and 4).
The constructed polynomial functions (14) and (15) give a good approximation of
the discrete values.

In the laminar region, at Reynolds numbers of a few hundreds, the
flow reaches steady-state conditions. Furthermore, Cd decreases with increasing
Re much more quickly than in the turbulent region. The transition is usually
marked with strong oscillations, where flow changes direction periodically and
the streamwise motion of the fluid becomes important. As a consequence, Cd

increases sharply. Sharp increase of Cd (Figures 6–9) indicates that the transition

Figure 7. Drag coefficient distribution for the cylindrical form (dh ¼ 0.9424 cm) and the ellipsoidal form

(dh ¼ 0.9142 cm); l=d ¼ 1.25.

Figure 6. Drag coefficient distribution for the cylindrical form (dh ¼ 0.5824 cm) and the ellipsoidal form

(dh ¼ 0.5649 cm); l=d ¼ 1.125.
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to turbulence occurs at slightly lower Re for the cylindrical form than for the ellip-
soidal form of tube cross section. In the turbulent regime, Cd changes at a much
slower rate, especially for the ellipsoidal form. Although the Cd for the cylindrical
form is in general larger than the Cd for the elliptical form, the difference decreases
with increasing dh.

5.3. Stanton Number Functions

Using the recorded time distributions of Stanton number StðtÞ, the time-average
St values were calculated for both forms of tube cross section and for the all imposed
pressure drops (Table 2). The collected averages of Re and St are given in Table 5 for
the cylindrical form and in Table 6 for the ellipsoidal form of tube cross section.

Figure 9. Drag coefficient distribution for the cylindrical form (dh ¼ 3.899 cm) and the ellipsoidal form

(dh ¼ 3.782 cm); l=d ¼ 2.0.

Figure 8. Drag coefficient distribution for the cylindrical form (dh ¼ 1.776 cm) and the ellipsoidal form

(dh ¼ 1.723 cm); l=d ¼ 1.5.
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Using the calculated averages (Tables 5 and 6), the Stanton number approxi-
mation functions were also determined with the least-squares method. These are
polynomial functions of Reynolds number Re and hydraulic diameter dh. For the
cylindrical tube cross section, the function

Stðdh; ReÞ ¼ � 0:02388þ 6:774 � 10�12d�4
h � 0:01714d

1=2
h

þ 6:553
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dh=Re

p
þ 2:090 � 10�7 Re

�3 þ 1:271 Re
�1=2

þ 7:999 � 10�6 Re� 2:945 � 10�13 Re
3 ð16Þ

was obtained, whereas for the ellipsoidal tube cross section the following function
was calculated:

Stðdh; ReÞ ¼ 0:03716þ 1:529 � 10�10d�3
h � 5:155 � 10�5d�1

h þ 0:02325 d
1=2
h

þ 105:9
ffiffiffiffiffi
dh

p
=Reþ 0:7523 Re

�1 þ 2:804 � 10�4 Re
1=2 ð17Þ

Figures 10 and 11 present contour plots of the Stanton number polynomials for
the cylindrical form (16) and for the ellipsoidal form (17) of tube cross section.

For the range of Re under consideration, the amount of heat transfer depends
crucially on the momentum transfer from the fluid flow to the structure walls. There-
fore, the St functions (Figures 10 and 11) are similar to the Cd functions (Figures 4
and 5). Stanton number decreases monotonically with increasing Re for any given dh.
This means that the flow velocity increases more quickly than the heat transfer from

Table 5. Reynolds number Re and Stanton number St for the cylindrical form

l=d 1 2 3 4 5 6 7 8

1.125 Re 258 385 549 816 1,178 1,733 2,557 —

St 0.094 0.073 0.061 0.049 0.042 0.035 0.031 —

1.25 Re 266 397 590 865 1,248 1,870 2,328 2,841

St 0.094 0.074 0.059 0.049 0.041 0.034 0.029 0.026

1.5 Re 321 473 692 1,019 1,489 2,169 2,746 3,258

St 0.097 0.074 0.060 0.048 0.040 0.034 0.030 0.028

2.0 Re 274 443 655 935 1,373 2,029 2,497 2,909

St 0.132 0.097 0.078 0.064 0.052 0.044 0.039 0.038

Table 6. Reynolds number Re and Stanton number St for the ellipsoidal form

l=d 1 2 3 4 5 6 7 8

1.125 Re 403 604 871 1,233 1,963 3,081 4,543 —

St 0.0437 0.038 0.033 0.030 0.023 0.018 0.016 —

1.25 Re 351 513 783 1,167 1,743 2,550 3,179 3,753

St 0.061 0.051 0.039 0.032 0.027 0.024 0.022 0.020

1.5 Re 422 670 1,025 1,553 2,312 3,396 4,255 4,957

St 0.070 0.052 0.041 0.034 0.028 0.025 0.023 0.021

2.0 Re 351 590 934 1,381 1,999 2,915 3,626 4,234

St 0.091 0.075 0.056 0.046 0.038 0.032 0.029 0.027
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Figure 11. Stanton number approximation function (17) for the ellipsoidal form.

Figure 10. Stanton number approximation function (16) for the cylindrical form.

FLOW ACROSS A BUNDLE OF TUBES 711



the isothermal walls to the fluid. Therefore, the temperature Tf ðtÞ as defined by (10)
is actually decreasing with increasing Re.

The contour plots (Figures 10 and 11) show that if Re is set, St drops rapidly at
small values of dh and then increases gradually with rising values of dh. A comparison
of the Cd and St functions shows that the minimum of St is located at a smaller dh

than the minimum of Cd . This indicates decoupling of momentum and heat transfer
between the flow and the structure, which was also observed and documented by
other researches (e.g., [21]).

In Figures 12–15, the Stanton number functions (16) and (17) for l=d ¼ 1.125,
1.25, 1.5, and 2.0 are compared with the discrete values of St (Tables 5 and 6). Again,
the constructed polynomial functions (16) and (17) give a satisfactory approximation
of the discrete values.

Figure 13. Stanton number distribution for the cylindrical form (dh ¼ 0.9424 cm) and the ellipsoidal form

(dh ¼ 0.9142 cm); l=d ¼ 1.25.

Figure 12. Stanton number distribution for the cylindrical form (dh ¼ 0.5824 cm) and the ellipsoidal form

(dh ¼ 0.5649 cm); l=d ¼ 1.125.

712 A. HORVAT AND B. MAVKO



In the laminar region, St decreases more quickly with increasing Re than in the
turbulent region. The transitional behavior that is evident from the calculated values
of Cd (Figures 6–9) shows almost no influence on the St values.

Figures 12–15 show that St is larger for the cylindrical than for the ellipsoidal
form of tube cross section. Although the difference is large for small dh, it almost
disappears at larger values of dh.

6. CONCLUSIONS

Transient numerical simulations of heat transfer were performed for heat
exchanger segments with cylindrical and ellipsoidal tubes in the staggered arrange-
ment. Based on the calculated results, the time distributions of Reynolds number
Re(t), drag coefficient Cd (t), and Stanton number St(t) were obtained. It is

Figure 15. Stanton number distribution for the cylindrical form (dh ¼ 3.899 cm) and the ellipsoidal form

(dh ¼ 3.782 cm); l=d ¼ 2.0.

Figure 14. Stanton number distribution for the cylindrical form (dh ¼ 1.776 cm) and the ellipsoidal form

(dh ¼ 1.723 cm); l=d ¼ 1.5.
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important to mention that we encounter much more complex physical behavior than
is reported in the available literature (see [22–24]). Large flow oscillations and semi-
stochastic motion of the flow in the spanwise direction were observed as the flow
regime changes from laminar to turbulent.

The time-average values of Re(t), Cd (t), and St(t) were used to construct the
polynomial functions Cdðdh; ReÞ and Stðdh; ReÞ for the cylindrical and elliptical
tubes. These polynomial functions are to be used as input correlations for the inte-
gral model of a whole heat exchanger [16].

The calculated time-average values of Re; Cd , and St also enabled us to draw
some conclusions on thermal effectiveness of the cylindrical and ellipsoidal forms of
tube cross section. The drag coefficient Cd as well as the Stanton number St decrease
monotonically with increasing Re for any hydraulic diameter dh. On the other hand,
Cd and St exhibit minima at a certain value of dh for any given Re. The value of dh

where Cd reaches its minimum is different from the value of dh where the minimum
of St is located.

In general, the values of Cd and St are lower for the ellipsoidal form in
comparison to the cylindrical form of tube cross section. Although the differences
are large for small dh, they become smaller for larger values of dh. This allows us
to conclude that the influence of different forms of bounding surfaces diminishes
with increasing dh.
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APPENDIX

Table 7. Number of grid nodes used in REV with the cylindrical tube cross section

l=d 1 2 3 4 5 6 7 8

1.125 54,811 54,811 89,428 89,428 114,500 173,550 350,245 —

1.25 71,445 71,445 71,445 158,669 158,669 222,296 222,296 222,296

1.5 89,525 89,525 89,525 89,525 180,002 180,002 180,002 180,002

2.0 79,047 79,047 79,047 79,047 79,047 79,047 116,734 116,734

Table 8. Number of grid nodes used in REV with the ellipsoidal tube cross section

l=d 1 2 3 4 5 6 7 8

1.125 57,834 57,834 57,834 180,618 180,618 180,618 213,225 —

1.25 87,097 87,097 87,097 87,097 137,600 205,476 205,476 205,476

1.5 119,309 119,309 119,309 119,309 119,309 174,752 174,752 174,752

2.0 95,641 95,641 95,641 95,641 95,641 186,868 186,868 186,868
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