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ABSTRACT
Prediction of thermal loads on nuclear reactor vessel lower plenum after core melting and relocation during a severe accident

requires knowledge about the core melt behavior, especially the circulation pattern. To analyze the heat transfer dynamics on the
lower plenum walls, two-dimensional numerical simulations of a fluid flow with internal heat generation were performed for
Rayleigh numbers 106, 107, 108, 109, 1011 and 1013 at Prandtl number 0.8. For subgrid motion modeling, a Large-Eddy Simulation
Smagorinsky model was implemented.

The minimum, time-average and maximum Nusselt numbers on the boundaries were calculated. The dynamics of fluid
structures were analyzed to reveal the instability mechanisms and transition to turbulence. Results disclose Rayleigh-Taylor
instabilities as a dominant mechanism for turbulence appearance, which occurs when the Rayleigh number is increased over 108.
The structure dependence of fluid motion at high Rayleigh numbers makes the time-average of heat transfer hard to assess. The
time-average values should be supplemented with probability distributions of related variables.

NOMENCLATURE
Cs Smagorinsky constant
cp specific heat
g gravity
I volumetric heat generation
L length of simulation domain
Nu Nusselt number, )()( .avervolwi TTLxT −∂∂

p  pressure
Pr Prandtl number υν

Ra Rayleigh number, )()( 5 νλυβILg
&

S deformation velocity tensor
T temperature
t time
v velocity
β temperature dilatation
λ thermal conductivity
ρ mass density
ϕ mesh generation parameter
ν  kinematic viscosity
υ thermal diffusivity
τ stress tensor

Subscripts/Superscripts
aver average
i,j indices
it   iteration counter
n number of grid points
sgd subgrid or turbulent variable
w wall
x horizontal direction
y vertical direction

INTRODUCTION
In a light water reactor, inadequate or prolonged absence

of nuclear reactor core cooling may cause core melting to occur.
The reactor core melt relocates, flowing downward towards the
reactor vessel lower plenum where it accumulates. Heat is
further generated in the pool due to fission product decay.
Because of high temperature melt, the integrity of the lower
plenum could be threatened unless sufficient outside cooling
exists. An extensive review of experimental and theoretical
results may be found, for example, in the work of Nourgaliev et
al. (1997).

In the past few years, the issue of lower plenum coolability
during the described severe accident scenario has received
much attention. According to the state-of-the-art knowledge
about this issue, the reactor vessel integrity would be



maintained. However, we were not successful in finding either a
full-scale experiment or an adequate numerical simulation,
which would prove the lower plenum integrity under severe
accident conditions.

Prediction of thermal loads on lower plenum walls
requires knowledge about the fluid behavior, especially about
the circulation pattern, which is, due to high temperature
gradients, mainly governed by buoyancy forces in the melt pool.
For these reasons the present work is focused on natural
convection in the core melt.

Previous experimental and numerical works from various
authors often presented only the mean values of Nusselt number
at the lower plenum boundaries without describing the
uncertainties of obtained results (e.g. Asfia and Dhir, 1996).
Such information about thermal load could be misleading.
Namely, at higher Rayleigh numbers (Ra>108), the fluid
circulation patterns become unsteady, which leads first to local
and then to global turbulent motion, so that mean values of
Nusselt number do not coincide with most probable values.
This suggests that single-value calculations of heat transfer
related values in the lower plenum should be supplemented at
least with extremal (minimum and maximum) values.

In the present paper, efforts will be presented to identify the
mechanisms, which govern the non-linear behavior of the
buoyancy flow and thus make the heat transfer loadings on the
walls difficult to assess.

MATHEMATICAL MODEL
The basic assumption in the present work was to consider

the melt as an incompressible fluid with internal heat
generation. As the boundaries are isothermal, the internal heat
generation is the prime mover for natural convection. Following
this assumption, the melt behavior is described with mass,
momentum and energy equations:

                             0    =⋅∇ v
&

  , (1)

   

( ) gT pvv
t

v &&&

&

∆β−⋅∇+∇
ρ

−=⊗⋅∇+
∂
∂

2
1

     
 

 
  ,

(2)

       
( )        

 

 2

ρ
+∇

ρ
λ=⋅∇+

∂
∂

pp c

I
T

c
Tv

t

T &

 .

(3)

To reduce the number of free parameters in the calculations
and to simplify the comparison of results, eqs. (1), (2) and (3)
were transformed into dimensionless form using Boussinesq' s
approximation to include buoyancy forces:
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A complete description of dimensionless variables may be
found in Decker (1996) and in Horvat (1998).

Turbulence modeling
At high Rayleigh numbers (Ra>108) time aperiodic

behavior occurs. When the Rayleigh number is further
increased (Ra>109) local turbulent motion appears, reducing the
local scale of fluid motion.

To properly take into account the subgrid motion of the
fluid, a Large-Eddy Simulation (LES) Smagorinsky model was
implemented, with a modification to capture also the buoyancy
forces due to temperature gradients (as proposed by Eidson,
1985). After applying the Large-Eddy Simulation concept of
spatial filtering, eqs. (4), (5) and (6) are written as:
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where the overbar indicates filtered values. The non-linear
convection term of subgrid velocity in the momentum equation
acts as a stress term with artificial subgrid viscosity, which is
defined according to Eidson (1985) as:
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The first term in eq. (10) represents stress forces while the
second term represents buoyancy. Similarly, the non-linear
convection term of subgrid velocity and temperature in the
energy equation can be replaced with diffusive flux using the
subgrid thermal diffusity defined as a linear function of subgrid
viscosity:
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The presented Smagorinsky model is too dissipative in the
vicinity of the walls. To reduce the near wall dissipation, the
van Driest dumping function was multiplied by the subgrid
viscosity.



Geometrical considerations
Although experimental and numerical results for semi-

circular and elliptical cavities are already available (Theofanous
et al., 1997), a square cavity was used to simplify calculations at
high Rayleigh numbers. The comparison of experimental results
from natural convection cases in rectangular and spherical
cavities reveals the similarity of heat transfer processes in both
geometries. Moreover, it is safe to assume that the maximum
Nusselt number is similar for rectangular and spherical cavities
of similar dimensions. The maximum Nusselt number occurs in
the upper corners of the cavities. Larger discrepancies between
heat transfer in rectangular and spherical cavities occur in the
lower parts (Asfia and Dhir, 1996; Nourgaliev et al., 1997).

Experimental and numerical results presented by Dinh and
Nourgaliev (1997) and Nourgaliev et al. (1997) suggest that the
fluid pattern is basically two-dimensional. A two-dimensional
model has thus been selected for the simulation of the
considered phenomena.

Initial and boundary conditions
At the simulation beginning, the fluid was considered at

rest with an isothermal temperature field.
For the momentum equation, no-slip boundary conditions

at all boundaries of the rectangular cavity were prescribed. To
represent the solidification and melting processes at the walls of
the lower plenum, identical isothermal boundary conditions at
all boundaries were prescribed for the energy equation.

NUMERICAL METHODS
The transport eqs. (7), (8) and (9) were discretized

according to a finite volume method using 128 x 128 numerical
cells. A staggered arrangement for grid points was applied.

The high Rayleigh numbers and modest number of grid
points used in the presented calculations required local mesh
refinement. This was necessary for accurate simulation of the
viscous sublayer behavior at the boundaries of the simulation
domain. In the x-direction, the numerical mesh was refined
according to eq. (12):
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whereas in the y-direction, it was refined according to eq. (13):

           
( ) 






















πϕ−+ϕ

−
=∆

yy

y
j n

j
Sin

n

L
y 21

1 ,

(13)

where the parameter ϕ  was 0.2.

Discretisation techniques
Spatial discretisation of transport eqs. (7), (8) and (9)

followed the way of central-symmetric discretisation on a
staggered grid (Harlow and Welsh, 1965).

Time integration was independent from spatial
discretization. For the energy eq. (9), the second-order accurate
explicit Adam-Bashford scheme was implemented:
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In the case of the momentum eq. (8), a combination of the
Adam-Bashford scheme and the projection method was used.

The elliptic pressure equation, which arises from
combining eqs. (7) and (8) to satisfy the mass conservation
principle, was solved with the Conjugate Gradient method
(Ferziger and Periü� ����).

Stability
 Timestep stability restrictions for time integration were

taken from explicit central symmetric scheme for convection-
diffusion equation. The diffusion stability condition
implemented in the numerical scheme is formulated as:
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and the combined convection-diffusion stability condition as:
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The largest time step, which satisfied both conditions, eqs. (16)
and (17), was used for time marching.

RESULTS
Simulations were performed for Rayleigh numbers 106,

107, 108, 109, 1011 and 1013. The Prandtl number was 0.8 in all
cases. Numerically calculated Nusselt numbers were averaged
along the boundaries and through simulated time. Averaged
Nusselt numbers were than compared with experimentally
obtained results of Nourgaliev et al. (1997), and Steinberner
and Reineke (1978). The comparison was presented in Horvat
et al. (1998). Observable differences between experimental and
numerical results first occur at Rayleigh number 108, when the
fluid circulation becomes unsteady. This makes the heat transfer
difficult to assess. It was shown that the probability densities of
Nusselt number distributions are also important. Namely, to
realistically determine the threat to lower plenum integrity, the



probability of thermal loadings has to be known. The non-linear
behavior of the fluid at high Rayleigh numbers produces
probability density functions different from Gauss functions. As
a consequence, the most probable values of heat transfer do not
coincide with time-averaged values (Horvat et al., 1999).

In the present paper, the mechanisms of unsteady
momentum and heat transfer will be explained. The time
minimum (eq.19), average (eq.18) and maximum (eq.20) local
Nusselt numbers along the boundaries were calculated after the
thermal steady state was reached.
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 The thermal steady state was defined as a balance
between thermal energy production and losses through
boundaries of the simulation domain. The time period during
which the time average Nusselt number was calculated was 1/2
of the simulation time.

Laminar fluid motion
At Rayleigh numbers 106 and 107 the fluid circulation is

stable, forming two counter-rotating vortices (fig. 1).

  

Figure 1: Fluid circulation at Ra = 10 6, Pr = 0.8.

Figure 2:  Nusselt number at the bottom boundary,
Ra = 106, Pr = 0.8

Figure 3:  Nusselt number at the side boundary,
Ra = 106, Pr = 0.8

Figure 4:  Nusselt number at the upper boundary,
Ra = 106, Pr = 0.8



On figs. 2-4 the minimum, time-average and maximum
Nusselt numbers for different boundaries are presented.
Because the system reaches a steady state, the minimum, time-
average and maximum Nusselt numbers coincide at the end of
the simulation. In the case of Rayleigh number 107, a steady
state was also reached.

Generally, the Nusselt numbers are low at the bottom (fig.
2) and increase towards the upper boundary of the simulation
domain (fig. 3). A local maximum is reached in the upper
corners on the sidewalls. Similar values of Nusselt numbers
may also be observed on parts of the upper boundary (fig. 4).

 At Rayleigh number 107, Rayleigh-Taylor instabilities,
which are the result of intensive cooling of the fluid at the top,
cause a "jet" of cold fluid from the upper boundary towards the
center of the simulation domain to appear. The jet produces two
additional and stable vortices in the middle of the upper
boundary. The consequence of the described process is a deep
valley in the Nusselt number curve on the upper boundary.

Bifurcation behavior
At Rayleigh number 108, the fluid circulation does not

reach a steady state after the initial thermal transient. The
system experiences a bifurcation behavior, where it oscillates
between two extreme modes (fig. 5 and 6). This results in time-
dependence of the Nusselt number, where the minimum, time-
average and maximum Nusselt number can be distinguished as
shown on figs. 7, 8 and 9. The differences between minimum,
time-average and maximum local Nusselt numbers are larger on
the side and upper boundaries where the Nusselt numbers are
also higher than on the bottom boundary.

Figure 5: Fluid circulation at Ra = 10 8, Pr = 0.8

Figure 6: Fluid circulation at Ra = 10 8, Pr = 0.8

Figure 7:  Nusselt number at the bottom boundary,
Ra = 108, Pr = 0.8

Figure 8:  Nusselt number at the side boundary,
Ra = 108, Pr = 0.8



Figure 9:  Nusselt number at the upper boundary,
Ra = 108, Pr = 0.8

The two local peaks on the bottom Nusselt number curve
(fig. 7) reveal the additional vortices caused by downward flow
at the sidewalls. The phenomenon is not limited only to the
rectangular geometry but can be also observed in hemispherical
and elliptical geometries as presented by Nourgaliev et al.
(1997).

In the middle of the upper boundary (fig. 9) the Nusselt
number inclination reveals a persistent jet of cold fluid towards
the center of the simulation domain, which changes its strength
in time (fig. 6). On both sides the large differences between
minimum, time-average and maximum Nusselt number show
additional locations where Rayleigh-Taylor instabilities occur,
which results in the appearance of time-dependent vortices (fig.
6).

The higher Rayleigh number causes additional fluid
structures to appear. During the heat-up transient or when the
Rayleigh number is modest (Ra=106...108) the symmetry is
preserved and the vortices always appear in pairs. This can be
clearly observed on figs. 1, 5, 6 and 13.

Instabilities and transition to turbulence
When the Rayleigh number is further increased (Ra>108),

the fluid motion becomes asymmetric due to time-dependent
vortices. Because of instabilities, which appear at the
boundaries of the simulation domain, first local and then global
transition from laminar to turbulent motion appears. This can be
identified as a sharp scale reduction of fluid motion.

Vortex formation and strong mixing of cold and hot fluid
can be first observed in the lower corners of the simulation
domain (as on figs. 5 and 6). Namely, the liquid is flowing
downwards in a very narrow "boundary layer". Because of
intensive cooling through the isothermal side wall, the velocity
of the flow is increased. In the lower region of the simulation
domain, when the accelerating downward flow meets slow

buoyancy flow, strong  mixing occurs. The vortices, which can
be distinguished from the temperature field (fig. 10), first
appear symmetrically in both corners of the simulation domain.
When the Rayleigh number is increased to 1011, the whole
lower region becomes unsteady with no permanent fluid
structures (fig. 11).

      Figure 10: Temperature field in lower corners of
simulation domain, Ra=10 8, Pr=0.8 (arrows indicate
flow direction)

Figure 11: Unsteady temperature field at lower
boundary, Ra=10 11, Pr=0.8

At Rayleigh number 109 or higher, the counterflows at the
side boundaries also cause Kelvin-Helmholz instabilities.
When the perturbation in the boundary layer flow is large
enough, it intensifies, producing large separated waves. As the
temperature contour field on fig. 12 demonstrates, the
temperature of the wave core is lower than the surrounding
temperature. This makes wave growth self-bounded and unable
to globally influence the general circulation pattern.

Figure 12: Kelvin-Helmholz instability at side
boundary, Ra=10 9, Pr=0.8

T is
increasing



A phenomenon, which influences the fluid circulation
more fundamentally, is the Rayleigh-Taylor instability. The
upper boundary of the simulation domain is isothermal with the
temperature lower than the fluid temperature. The rising fluid is
cooled on the upper boundary and the density is increased. The
described situation leads to Rayleigh-Taylor instabilities already
at relatively low Rayleigh numbers (Ra=107) and to jet
formation. Simulations also revealed the symmetry of jet
appearance during heat-up period (fig. 13) or at Rayleigh
numbers lower than 109.

Figure 13: Symmetric Rayleigh-Taylor instability at
upper boundary, Ra=10 11, Pr=0.8

Figure 14: Development of Rayleigh-Taylor instability
at upper boundary, Ra=10 13, Pr=0.8

At higher Rayleigh numbers the symmetry disappears. The
jets become stronger, disrupting the thermally stratified flow in
the core of the simulation domain. The position of appearance
and the shape of jets become random (fig. 14).

The described behavior of fluid motion strongly influences
heat transfer conditions on the boundaries of the simulation
domain. As presented on figs. 15-17 the Nusselt number curves
lose the shape which was characteristic in laminar (figs. 2-4) or
bifurcation flow regime (figs. 7-9). The shape depends mostly
on local fluid structures. Local peaks in Nusselt number
function indicate a modest size of fluid structures, which is
characteristic for turbulent flow regime. The differences
between minimum, time-average and maximum local Nusselt
numbers increase with increasing Rayleigh number.

Figure 15:  Nusselt number at the bottom boundary,
Ra = 1013, Pr = 0.8

Figure 16:  Nusselt number at the side boundary,
Ra = 1013, Pr = 0.8

Figure 17:  Nusselt number at the upper boundary,
Ra = 1013, Pr = 0.8



The weak similarity between minimum, average and
maximum Nusselt number functions also confirms the time-
dependence of fluid structures and the unsteadiness of the heat
transfer process on the bottom boundary.

The described structure dependence of fluid motion at the
boundaries of the simulation domain makes the time average of
heat transfer hard to assess. To overcome this difficulty the
time-average values should be supplemented with probability
distributions of related variables.

CONCLUSIONS
Two-dimensional numerical simulations of a fluid flow

with internal heat generation in a rectangular cavity at Rayleigh
numbers from 106 to 1013 were performed to examine the
Nusselt number behavior on the boundaries of the simulation
domain. The dynamics of Nusselt number was also analyzed to
identify the mechanisms responsible for transition from laminar
to turbulent fluid motion. To capture the fluid subgrid motion, a
Large-Eddy Simulation (LES) Smagorinsky model was applied.

The simulations disclosed that steady-state heat transfer
can be achieved till Ra=107. At Ra=108 the first instabilities are
observed which results in bifurcation behavior of the system.
When the Rayleigh number is further increased, the fluid flow
becomes unsteady with no permanent fluid structures.

The results reveal large intervals between the lowest and
the highest calculated Nusselt numbers on the boundaries of the
simulation domain. The intervals also increase asymmetrically
with increasing Rayleigh number as a consequence of instability
and turbulence appearance. This suggests that in the future, the
single-value calculations of heat transfer values in the lower
plenum should be supplemented with probability distributions.
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