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ABSTRACT

Prediction of thermal loads on lower plenum walls after core melting and
relocation during severe accident conditions requires knowledge about the core melt
behavior, especially the circulation pattern. To analyze the heat transfer dynamics on the
lower plenum walls, two-dimensional numerical simulations of a fluid flow with internal
heat generation were performed for Rayleigh numbers 10°, 107, 10, 10°, 10'" and 10" at
Prandtl number 0.8. For subgrid motion modeling, the Large Eddy Simulation (LES)
Smagorinsky model was implemented. Time and boundary-averaged Nusselt numbers
were calculated. Results show that differences between minimum, average and maximum
Nusselt number increase in exponential manner when the Rayleigh number is increased
beyond 10%. Probability densities of Nusselt number were also calculated to realistically
assess unsteady thermal loads. The calculated probability density functions indicate that
time-average Nusselt numbers usually do not coincide with most probable values. The
study also discloses the appearance of multiple Nusselt number probability peaks.

1. INTRODUCTION

Inadequate or prolonged absence of nuclear reactor core cooling may cause core
melting to occur. The reactor core melt relocates, flowing downward towards the reactor
pressure vessel lower plenum where it accumulates. In the past few years, the issue of
lower plenum coolability during the described severe accident scenario has received
much attention. According to the state-of-the-art knowledge about this issue, the reactor



vessel integrity would be maintained. However, this has not yet been proven with either a
full-scale experiment or an adequate numerical simulation.

Prediction of thermal loads on lower plenum walls requires knowledge about the
fluid behavior, especially about the circulation pattern, which is, due to high temperature
gradients, mainly governed by buoyancy forces in the melt pool. For these reasons the
present work is focused on natural convection in the core melt.

Previous experimental and numerical works from various authors often presented
only the mean values of Nusselt number at the lower plenum boundaries without
describing the uncertainties of obtained results. Such information about thermal load
could be misleading. Namely, at higher Rayleigh numbers (Ra>10), the fluid circulation
patterns become unsteady, which leads first to local and then to global turbulent motion,
so that mean values of Nusselt number do not coincide with most probable values. This
suggests that single-value calculations of heat transfer values in the lower plenum should
be supplemented with probability distributions or at least with extreme (minimum and
maximum) values.

2. MATHEMATICAL MODEL
2.1 Transport equations

The basic assumption in the present work was to consider the melt as an
incompressible fluid with internal heat generation. Following this assumption, the melt
behavior was described with mass, momentum and energy equations:
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To reduce the number of free parameters in the calculations and to simplify the
comparison of results, Egs. (1), (2) and (3) were transformed into dimensionless form
using Boussinesq' s approximation to include buoyancy forces:
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A complete description of dimensionless variables may be found in Horvat (1998).
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2.2 Turbulence modeling

At high Rayleigh numbers (Ra>10%) at which simulations were performed, time-
aperiodic behavior occurs. When the Rayleigh number is further increased (Ra>10") local
turbulent motion appear, reducing the local scale of fluid motion.

To properly take into account the subgrid motion of the fluid, the Large-Eddy
Simulation (LES) Smagorinsky model was implemented, with a modification to capture
also the buoyancy forces due to temperature gradients (as presented by Eidson, 1985).
After applying the Large-Eddy Simulation concept of spatial filtering, Egs. (4), (5) and
(6) are written as:
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where the overbar indicates filtered values. The non-linear convection term of subgrid
velocities in the momentum equation acts as a stress term with artificial subgrid viscosity,
which is defined according to Eidson (1985) as:
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The first term in Eq. (10) represents stress forces while the second term represents
buoyancy. Similarly, the non-linear convection term of subgrid velocities and temperature
in the energy equation can be replaced with diffusive flux using the subgrid thermal
diffusity defined as a linear function of subgrid viscosity:

Vsgd (11)
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The presented Smagorinsky model is too dissipative in the vicinity of the walls.
To reduce the near wall dissipation, the subgrid viscosity was multiplied by the van Driest
dumping functions (Patankar and Spalding, 1970).

2.3 Geometrical considerations

Although experimental and numerical results for semi-circular and elliptical
cavities are already available (Theofanous et al., 1997), a square cavity was used to
simplify calculations at high Rayleigh numbers. The comparison of experimental results
from natural convection cases in rectangular and spherical cavities reveals the similarity
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of heat transfer processes in both geometries. Moreover, it is safe to assume that the
maximum Nusselt number is similar for rectangular and spherical cavities of similar
dimensions. The maximum Nusselt number occurs in the upper corners of the cavities.
Larger discrepancies between heat transfer in rectangular and spherical cavities occur
only in the lower parts (Asfia and Dhir, 1996; Nourgaliev et al., 1997).

Experimental and numerical results presented by Dinh and Nourgaliev (1997) and
Nourgaliev et al. (1997) suggest that the fluid pattern is basically two-dimensional. A
two-dimensional model should thus be adequate for the simulation of considered
phenomena.

2.4 Initial and boundary conditions

At the simulation beginning, the fluid was considered at rest with an isothermal
temperature field.

For the momentum equation, no-slip boundary conditions at all boundaries of the
rectangular cavity were prescribed. To represent the solidification and melting processes
at the walls of the lower plenum, isothermal boundary conditions at all boundaries were
prescribed for the energy equation.

3. NUMERICAL METHODS
3.1 Numerical mesh

The transport Eqgs. (7), (8) and (9) were discretized according to a finite volume
method using 128 x 128 numerical cells. A staggered arrangement for grid points was
applied.

The high Rayleigh numbers and modest number of grid points used in the
presented calculations required local mesh refinement. This was necessary for accurate
simulation of the viscous sublayer behavior at the boundaries of the simulation domain.
In the x-direction, the numerical mesh was refined according to Eq. (12):
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whereas in the y-direction, it was refined according to Eq. (13):

Ay; = Ly [(p+(1(p)Sin2[nLB (13)
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where the parameter ¢ was set equal to 0.2.
3.2 Discretisation techniques

Spatial discretisation of transport Egs. (7), (8) and (9) followed the way of central-
symmetric discretisation on a staggered grid (Harlow and Welsh, 1965).
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Time integration was independent from spatial discretization. For the energy Eq.
(9), the second-order accurate explicit Adams-Bashforth scheme was implemented:
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In the case of the momentum Eq. (8), a combination of the Adams-Bashforth scheme and
the projection method was used.

The parabolic pressure equation, which arises from combining Egs. (7) and (8) to
satisfy the mass conservation principle, was solved with the Conjugate Gradient method
(Ferziger and Peri¢, 1996).

3.3 Stability

Time step stability restrictions for time integration were taken from explicit
central symmetric scheme for convection-diffusion equation. The diffusion stability
condition implemented in the numerical scheme is formulated as:
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and the combined convection-diffusion stability condition as:
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The largest time step which satisfied both conditions, (16) and (17), was used for time
marching.

4. RESULTS

Simulations were performed for Rayleigh numbers 106, 107, 108, 109, 10" and
10". An extrapolation with a 3rd-order polynomial was used to obtain time-averaged
Nusselt numbers for Rayleigh number 10", which corresponds to realistic accident
conditions. The Prandtl number was 0.8 in all cases. Figure. 1 presents a sample of
calculated unsteady flow field (Ra=10").
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Fig.1  An example of instantaneous flow field at Ra=10".
4.1 Time and local-averaged Nusselt numbers

First, time and boundary-averaged Nusselt numbers were calculated. Rayleigh-
Nusselt number dependencies are presented in logjo-log;y diagrams. Minimum and
maximum Nusselt numbers are plotted along with the averaged Nusselt number.
Calculated Rayleigh-Nusselt number dependencies are also compared with experimental
results of other authors. On Figs. 2-4, K&G indicates results of Kulacki and Goldstein
(1972), whareas S&R indicates results of Steinberner and Reineke (1978).

On Fig. 2, the Rayleigh-Nusselt number dependencies for the bottom boundary are
presented. Calculated values of Nusselt number agree well with experimental results at
lower Rayleigh numbers. Differences increase when the Rayleigh number exceeds the
value 10'°. Similar overestimated results can also be observed in the work of other
authors (e.g. Nourgaliev et al., 1997) which conducted numerical simulations of natural
convection in a melt pool.
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Fig.2  Rayleigh number vs. Nusselt number for the bottom boundary.

When the average Nusselt numbers are compared with minimum and maximum Nusselt
numbers reached, observable differences first occur at Rayleigh number 10°. At this
point, a steady-state fluid circulation cannot be reached. The system experiences a
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bifurcation behavior of heat transfer variables. Figure 2 shows that differences between
minimum, average and maximum Nusselt numbers are slightly increasing in the log;o-
logyo diagram with increasing Rayleigh number. Although this trend is very slow in the
logjo-log)o diagram, it means that differences increase in exponential manner in the linear
Rayleigh-Nusselt number diagram.
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Fig.3  Rayleigh number vs. Nusselt number for the side boundary.

On Fig. 3, the Rayleigh-Nusselt number dependencies for the side walls are
presented. The calculated results show good agreement with experimental results of
Steinberner & Reineke (1978) for a rectangular cavity.

Again, we cannot confirm the linear dependence between Rayleigh and Nusselt
numbers in the logjo-log)o diagram. The differences occur first at Rayleigh number 108,
where a steady state cannot be established. Between Rayleigh numbers 10° and 10'' the
slower increase in Nusselt numbers coincides with the flow transition from laminar to
turbulent regime. Above Rayleigh number 10'' the Rayleigh-Nusselt number
dependences are basically linear in the log;o-log; diagram.
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Fig.4  Rayleigh number vs. Nusselt number for the upper boundary.
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On Fig. 4, the Rayleigh-Nusselt number dependencies for the upper wall are
presented. The Nusselt numbers there are higher than on the bottom boundary and
comparable to those on the side boundaries. The calculated results show again good
agreement with experimental results of Steinberner & Reineke (1978) and are lower that
those obtained by Kulacki & Goldstein (1972) for a fluid layer.

The differences between minimum, average and maximum Nusselt numbers
appear first at Rayleigh number 10 on the bottom and side walls. The transition to
turbulence is not as distinctive as on the side walls due to the nature of Rayleigh-Taylor
instabilities at the upper boundary. These instabilities, which produce “jets” of cold fluid
from the upper boundary towards the center of the simulation domain and appear
immediately after Rayleigh number exceeds 10%, cause random-like behavior of the fluid
flow at the upper boundary. The higher the Rayleigh numbers, the stronger are the jets of
cold fluid. The described random-like behavior of the fluid flow at the upper boundary
also causes a wider range between minimum and maximum Nusselt numbers than on the
bottom and side walls.

4.2 Time-averaged Nusselt number distributions

Along with the differences between minimum, average and maximum Nusselt
numbers, the probability densities of Nusselt numbers are also important. Namely, to
realistically determine the threat to lower plenum integrity, the probability of thermal
loads has to be known. From this point on, the present paper describes an attempt to
realistically assess time-dependent values of heat transfer on the boundaries. The
presented values of Nusselt number (Figs. 5-19) show the complexity of boundary layer
behavior at high Rayleigh numbers.

At Rayleigh numbers 10° and 107 the fluid circulation is stable, forming two
counter-rotating vortices. The Nusselt number is low at the bottom (Fig. 5) and increases
towards the upper boundary of the simulation domain (Fig. 6). A local maximum is
reached in the upper corner on the sidewalls. Similar values of Nusselt number may also
be observed on parts of the upper boundary (Fig. 7).
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Fig. 5 Nusselt number at the bottom Fig. 6 Nusselt number at the side
boundary, Ra = 10", Pr=0.8 boundary, Ra = 10", Pr=0.8

At Rayleigh number 107, Rayleigh-Taylor instabilities, which are the result of
intensive cooling of the fluid at the top, cause a jet of cold fluid from the upper boundary
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towards the center of the simulation domain to appear. The jet produces two additional
and stable vortices. The consequences of the described process appear on Fig. 7 as a deep
valley in the Nusselt number curve.

A similar process occurs also in the lower corners of the simulation domain where
it causes local increases in Nusselt number (Fig. 5). The phenomenon is not limited only
to the rectangular geometry but can be also observed in hemispherical and elliptical
geometries as presented by Nourgaliev et al. (1997).
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Fig. 7 Nusselt number at the upper
boundary, Ra = 10", Pr=0.8

At Rayleigh number 10%, the fluid circulation does not reach a steady state after
the initial thermal transient. This results in time-dependence of the Nusselt number,
where the minimum, average and maximum Nusselt number can be distinguished as
shown on Figs. 8, 10 and 12. The differences between minimum, average and maximum
local Nusselt numbers are larger on the side and upper boundaries where the Nusselt
numbers are also higher than on the bottom boundary.

The two peaks on the bottom Nusselt number curve (Fig. 8) show that the
additional vortices caused by downward flow at the side walls are stronger than at
Rayleigh number 10”. The large Nusselt number differences on Fig. 10 also indicates the
appearance of Kelvin-Helmholz instabilities between upward flow powered by internal
heat generation and downward flow at cold side walls. On the upper boundary (Fig. 12)
the Nusselt number inclination reveals a stable jet of cold fluid towards the center of the
simulation domain, which does not change its position nor strength in time. On both sides
the large differences between minimum, average and maximum Nusselt number show
additional locations of the Rayleigh-Taylor instabilities which result in the appearance of
time-dependent jets.
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On Figs. 9, 11 and 13 the contours of Nusselt number probability densities
(observed from "above") at Rayleigh number 10® and Prandtl number 0.8 are presented.
The diagrams' abscissa represents the coordinate on the boundary whereas the ordinate
represents the Nusselt number difference :

d(Nu) = Nu"" — Nu ,,, (19)

To obtain probability density functions, approximately 2000 calculated local
Nusselt numbers were distributed in 20 classes between the minimum and the maximum
Nusselt number. The number of samples in each class was than divided by the total
number of samples.

The probability densities of local Nusselt number significantly differ from the
Gauss function. The contours on Figs. 9, 11 and 13 reveal that the average Nusselt
number usually does not coincide with the most probable value. Figure 9 shows that the
probability density function of the Nusselt number for the bottom boundary is very
narrow with local peaks, which alternate around the average Nusselt number value. On
the side boundaries (Fig. 11) the function is wider with compactly arranged density peaks
around average Nusselt values. Figure 13, where the probability density function for
upper wall is presented, reveals that there is also a possibility of two probability peaks for
the Nusselt number distribution. This typically indicates a bifurcation behavior where two
flow patterns are equally possible, alternating through time from one to another.

On Figs. 14, 16 and 18 the local Nusselt numbers for the bottom boundary are
presented to show heat transfer dynamics when the Rayleigh number is increased. When
the Rayleigh number exceeds 10°, the local Nusselt number distributions on the
boundaries become asymmetric due to time-dependent vortices which appear at the
boundaries.

On Fig. 14 two additional peaks on maximum Nusselt number curve are present
which are not evident on Fig. 8. This is the result of two additional vortices, which appear
rarely and without changing the average of Nusselt number. When the Rayleigh number
is further increased to 10'' (Fig. 16) the appearance of the vortices on the bottom
boundary is not limited to the lower corners of the simulation domain. The whole bottom
boundary is exposed to the mixing of cold downward flow and hot buoyancy flow.
Although the fluid structures appear as almost stochastic, the general shape of average
Nusselt number curve, which was first observed at lower Rayleigh numbers, is preserved.
On Fig. 18 the local Nusselt numbers on the bottom boundary at Rayleigh number 10"
are presented. The Nusselt number distributions exhibit the stochastic behavior of the
fluid flow. Local peaks in Nusselt number function indicate modest size of fluid
structures, which is characteristic for turbulent flow regime. The weak similarity between
minimum, average and maximum Nusselt number functions also confirms the time-
dependence of fluid structures and the unsteadiness of the heat transfer on the bottom
boundary.
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The probability densities of local Nusselt number differ from the Gauss function
and also from the probability densities at lower Rayleigh numbers. On the bottom and
upper boundaries the symmetry is no longer preserved (Fig. 15). As it is evident from
Figs. 15, 17 and 19, the differences between minimum and maximum Nusselt numbers
increase. With increasing Rayleigh number the probability density functions are also
becoming more flat. This is the result of stochastic fluid motion where the probability of
vortex appearance is similar at different locations.

Although the probability densities of local Nusselt number are more flat as in the
case of Rayleigh number 10%, the multiple peaks of probability density functions are
higher and more compactly organized around average Nusselt number (Figs. 17 and 19).
The reason for such qualitative changes in probability density functions is in the
fundamental differences between bifurcational flow (Figs. 8-13) and turbulent flow (Figs.
14 -19).

Similar observations could also be made for the side and upper boundaries of the
simulation domain.

5. CONCLUSIONS

Two-dimensional numerical simulations of a fluid flow with internal heat
generation in a rectangular cavity at Rayleigh numbers from 10° to10'* were performed to
investigate heat transfer dynamics in the reactor pressure vessel lower plenum at severe
accident conditions. To capture the fluid subgrid motion, the Large-Eddy Simulation
(LES) Smagorinsky model was applied.

The first purpose of the numerical experiments was to examine the Nusselt
number behavior on the boundaries of the simulation domain at different Rayleigh
numbers. Local and time-averaged Nusselt numbers were calculated and compared with
experimental results of other authors, showing satisfactory agreement. These simulation
results were then extrapolated to Rayleigh number 10'°, which corresponds to realistic
accident conditions.

Dynamics of Nusselt number were also analyzed. The results reveal that
differences between minimum, average and maximum Nusselt numbers over the
boundaries of the simulation domain increase with increasing Rayleigh number. The
calculated Nusselt number probability density functions indicate that time-averaged
Nusselt numbers usually do not coincide with most probable values. The study also
discloses the appearance of multiple Nusselt number probability peaks. Therefore, the
results of this work suggest that the usually presented average values of Nusselt number
should be supplemented with probability density functions to realistically assess thermal
loads on the lower plenum walls.
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NOMENCLATURE

Cs  Smagorinsky constant

¢,  specific heat

g  gravity

1 volumetric heat generation

L length of simulation domain

Nu  Nusselt number, (67/3x;)L/(T,, = T yyer )

p  pressure
Pr  Prandtl number v/v

Ra Rayleigh number, (g[B7L°)/(viv)
RHS right-hand-side of convection-diffusion equation
deformation velocity tensor, S ji= 0.5(0v, /Oy + dv y / 0x)

temperature

time

velocity

temperature dilatation
thermal conductivity

mass density

mesh generation parameter
kinematic viscosity
thermal diffusivity

stress tensor

A c <680 P TN

Subscripts

aver average

ij indices

n  number of grid points

sgd subgrid or turbulent variable
w  wall

x  horizontal direction

vy vertical direction

Superscript

n number of iteration

(14)
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