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ABSTRACT
Heat exchangers are one of the basic installations in power and process industries. The

present guidelines provide an ad-hoc solution to certain design problems. A unified approach
based on simultaneous modeling of thermal-hydraulics and structural behavior does not exist.
The present paper describes the development of integral numerical code for simulation of heat
exchangers. The code is based on Volume Averaging Technique (VAT) for porous media
flow modeling. The calculated values of the whole-section drag and heat transfer coefficients
show an excellent agreement with already published values. The matching results prove the
correctness of the selected approach and verify the developed numerical code used for this
calculation.

1  INTRODUCTION
Heat exchangers are one of the basic installations in power and process industries. This

is especially true for PWRs, where the steam generator is the heat transfer interface between
the primary and the secondary circuit. Despite their crucial role, there is still a great deal of
empiricism involved in the design procedure of heat exchangers. Although present guidelines
provide an ad-hoc solution to the design problems, a unified approach based on simultaneous
modeling of thermal-hydraulics and structural behavior does not exist. As a result, designs are
overly constrained with a resulting economic penalty. Therefore, the optimization of a heat
exchanger design can bring significant cost reduction to industry.

The present paper is a part of a broader effort which is ongoing in the Morrin-
Martinelli-Gier Memorial Heat Transfer Laboratory at University of California, Los Angeles
to develop a scientific procedure for optimization of  heat exchanger geometry. As a part of
this program an integral numerical code for modeling of heat exchangers was constructed.
The numerical code is based on Volume Averaging Technique (VAT) for a porous media
flow, which was presented by Whiteker [1] and further developed by Travkin and Catton [2,
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3]. Treating the heat exchanger structure as a uniform porous media makes the numerical code
fast running and suitable for the surface optimization calculations.

2  GEOMETRICAL CONSIDERATIONS
The geometry of the simulated test section is presented on fig. 1. It is the same as the

experimental test section in the Morrin-Martinelli-Gier Memorial Heat Transfer Laboratory,
where a fluid behavior during induced finite amplitude tube vibrations has been studied. In
this case water has been taken as a coolant and stainless steel as a tube material. The tubes had
staggered arrangement with a diameter d =1'' (0.0254m). The pitch to diameter ratio was set
to p/d = 1.4.

                                          (a)                                                             (b)
Figure 1: Simulated section of a heat exchanger (a); tube arrangement (b)

The inlet water temperature was 293K (20°C). The bottom and top boundaries as well
as the internal structure were taken as isothermal with the temperature set to 296K (23°C).
The sidewalls were considered to be adiabatic. For velocity, no-slip boundary conditions were
assigned on the bottom and top walls and slip boundary conditions on the sidewalls.

The pressure drop across the test section was adjusted so that flow regimes at Reynolds
numbers from Re =10 to 1000 could be examined.

3  GOVERNING EQUATIONS
For the described heat transfer problem, the basic transport equations for fluid flow (eq.

1-3) are:

0=∂ ii v (1)

ijjfiijjf vpvv ∂∂µ+−∂=∂ρ (2)

fjjffjjff TTvc ∂∂λ=∂ρ (3)

In order to obtain transport equations for phase averaged variables, volumetric
averaging, see Travkin and Catton [3] for details, was applied to the above equations. In the
averaged eqns. (4-6), the phase averaged variables are denoted with ~ and the phase index (f or
s). Thus, the fluid transport eqns. (1-3) are transformed to:

0=∂ ii v~ (4)
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Ω
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rr 11

(5)

∫
Ω∂

∂λ
Ω

+∂∂λα=∂ρα sdTT~T~v~c fjffjjfffjjfff
r1

(6)

The spatial scale of the phase averaged values (4-6) is much larger than the scale of the
local values (1-3) as a result of the volumetric averaging. This can enable much faster
calculation of phase averaged values, but only if the integrals on the right-hand-side of eqns.
(4-6) are solved efficiently.

The integrals in eqns. (4-6) are a consequence of the volumetric averaging. They
capture momentum (5) and energy transport (6) on the fluid-solid interface. Similar to
turbulent flow, separate models in the form of closure relations are needed. In the present
case, the integrals in eqns. (4-6) are replaced with drag (8) and heat transfer (9) relations. The
resulting eqns. are

0=∂ ii v~ (7)

12

2
1 −ρ−∂∂µα+∂α−=∂ρα iifdijjffifijjff dxv~Cv~p~v~v~ (8)

( )sfwfjjfffjjfff T~T~hST~T~vc −−∂∂λα=∂ρα (9)

The closure relations in eqns. (7-9) simulate system local behavior with the averaged
values. In order to succeed in this contradictory task, additional information in form of drag
(8) and heat transfer (9) coefficients have to be added to the transport equations (7-9). For
these coefficients, reliable experimental data were found in Žukauskas and Ulinskas [4].

To further simplify the simulated system, the fluid flow was taken as unidirectional with
a constant pressure drop. As a consequence, the velocity changes only transverse to the flow
direction. This means that the streamwise pressure gradient across the entire simulation
domain is balanced with shear stresses in the transverse (z) direction:

p~v~CLv~ fxfdxxzzff ∆α=ρ+∂∂µα− 2

2
1

(10)

where ∆p is positive.
Due to the thermal boundary conditions, the temperature field is two-dimensional,

changing its values in vertical (z) and streamwise (x) directions. As shown by the energy eqn.
(11), thermal convection in the streamwise direction is balanced by diffusion due to a vertical
temperature profile as well as with heat transferred from isothermal tubes:

( )sfwfzzfffxxfff T~T~hST~T~v~c −−∂∂λα=∂ρα (11)

4  NUMERICAL METHODS

Due to the boundary conditions, velocity xv~  can be described as a one-dimensional and
temperature as a two-dimensional scalar field. Nevertheless, the constructed numerical code
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calculates the velocity as a  two-dimensional and temperature as a three-dimensional scalar
field. These numerical code extensions and the additional computational effort were invested
in order to be able to treat three-dimensional thermal problems in the  future.

The momentum equation (10) was discretized using a central-symmetric scheme that
resulted in the five diagonal matrix system:
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Although the matrix (eq. 12) is symmetrical, it has non-constant terms on the central diagonal
due to non-linearity of the drag force term.

In the energy equation (11), the convection term was discretized using an upwind
scheme, whereas for the diffusion term, a  central-symmetric scheme was applied:
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In this case the resulting seven diagonal matrix system is not symmetrical due to the upwind
discretization, nor does it have constant terms due to the locally changing heat transfer
coefficient h.

In order to invert the matrix systems (12 & 13) efficiently, a preconditioned conjugate
gradient method, described by Ferziger and Perić [5], was adopted for this specific problem.

5  RESULTS AND DISCUSSION
Simulations were performed for Reynolds numbers ranging from Re = 10 to Re = 1000

at a pitch-to-diameter ratio of p/d = 1.4. The whole-section drag coefficient Cd, which is
locally defined by

dfxfd p~v~C ∆α=ρ 2

2
1

(14)

is plotted on a log-log diagram, fig. 2, as a function of Reynolds number Re. The experimental
as well as the computational results of Žukauskas and Ulinskas [4], Launder and Massey [6],
Bergalin et. al [7] and LeFeuvre [8] are added for comparison.
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Figure 2: Reynolds number Re versus whole-section drag coefficient Cd.

Although the computed results are still preliminary, they show excellent agreement with
the experimental results of Bergelin et al. [7] and Žukauskas and Ulinskas [4] as well as with
numerical results of Launder and Massey [6] for similar pitch-to-diameter ratios.

Žukauskas [9] defined the coefficient Kf  to account for temperature dependence in
experimental data :
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= (15)

It is used here to compare our heat transfer coefficient calculations with available data. In this
case, subscript w denotes wall temperature and subscript f fluid average temperature,
calculated as a mean value between inflow and wall temperature.
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Figure 3: Reynolds number Re versus coefficient Kf.
Fig. 3 presents the calculated values of the coefficient Kf  together with values obtained

from experimental and numerical results of Žukauskas and Ulinskas [4], Bergelin et. al [7],
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Grimison [10] and Žukauskas and Šlančiaunskas [11]. The calculated values of the coefficient
Kf  are in close agreement with the previously published data.

Three different linear regions can be identified in the Re-Kf  relationship shown in fig.3.
The first region is for Reynolds numbers Re<50, the second for Reynolds numbers
50<Re<615 and the third for Reynolds numbers 615<Re. As is evident from fig. 3, the value
of Kf  increases faster as Reynolds number increases.

Table 1 summarizes values of Nusselt number Nuf  and thermal power Q as functions of
Reynolds number. In contrast to the Nusselt number Nuf , which is directly determined by the
selection of experimental values of local heat transfer coefficient h, the values of thermal
power Q must be calculated from the fluid inlet and outlet temperatures:

( )finoutxfff T~T~v~cQ −ρα= (16)

Table 1: Nusselt number and thermal power as a function of Reynolds number

Re Nu Q [W]
10.93 5.5 147.2
20.95 7.1 257.6
40.17 9.2 427.0
77.09 13 699.7
132.8 17 1026
222.4 22 1445
372.6 28 2004
624.4 38 2843
1047 52 3990

Figure 4 presents the fluid temperature fields. To clearly show how the temperature
field changes with the flow regime, only the cases at the lowest and highest Reynolds number
are presented.
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Figure 4: Temperature profiles at Reynolds number Re = 10.93  (a) and Re = 1046.7  (b)
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At a Reynolds number of Re ~10 (fig. 4a), the isothermal tubes immersed into a cross-
flow with domain walls at the tube temperature manage to heat the fluid almost to the heating
surface temperature; the fluid temperature in the core of the flow raises from 20.0 oC to
20.8 oC after 1.38 cm and reaches 22 oC at the section end. The vertical thermal diffusion
from the bottom and top walls is also strong forming a thick thermal boundary layer.

At a Reynolds number of Re ~1000 (fig. 4b), the water leaves the simulated section with
a temperature of 20.8 oC. This indicates that with the imposed increase in Reynolds number
the increase in heat transfer from the structure to the flow is smaller than the increased heat
carrying capability. Namely, after passing the simulated section, the water still has a potential
for heat removal. Further, the thermal boundary layer next to the walls becomes much thinner
than in the former case, due to a dominating convection in a streamwise direction.

6  CONCLUSIONS
The present paper describes the construction of a fast running numerical procedure for

heat exchanger calculations. The heat exchanger internal structure, in form of isothermal
tubes, was treated as a homogenous porous media. The local values of drag and heat transfer
coefficients that were needed to close the transport equations were taken from Žukauskas and
Ulinskas [4]. The resulting partial differential equations were discretized using the
conservation properties of the finite volume method. The resulting system of semilinear
equations was then solved with a preconditioned conjugate gradient method. As a benchmark
configuration, an experimental test section that has been used in the Morrin-Martinelli-Gier
Memorial Heat Transfer Laboratory for steam-tube vibration studies was selected.

The calculated values of the whole-section drag and the heat transfer coefficients show
excellent agreement with published data. The matching results demonstrate that the selected
approach is appropriate for heat exchanger calculations and verify that the numerical code
developed for this calculation yields accurate results.

In the paper the fluid temperature fields are also presented. The fluid isotherms show
that increasing Reynolds number Re does not increase heat transfer as fast as the heat carrying
capacity of the fluid. As a consequence the fluid leaves the heat exchanger capable of more
heat removal.
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NOMENCLATURE

c specific heat Subscripts / Superscripts
Cd drag coefficient i, j, k direction indices
d diameter f fluid phase
h heat transfer coefficient new next iteration step
L length of simulation domain old previous iteration step
Kf heat transfer coefficient (Žukauskas [4]) s solid phase
Nu Nusselt number w wall
p pressure, pitch + next grid volume
Q thermal power - previous grid volume
Pr Prandtl number Greek letters
Re Reynolds number α phase fraction
s surface ρ density
Sw specific interface surface Ω control volume
v velocity ∆ finite difference
T temperature µ dynamic viscosity
x spatial coordinate ν kinematic viscosity
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