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Abstract

Detailed transient numerical simulations of fluid and heat flow were performed for a number of heat exchanger segments with cylin-
drical, ellipsoidal and wing-shaped tubes in a staggered arrangement. The purpose of the analysis was to get an insight of local heat trans-
fer and fluid flow conditions in a heat exchanger and to establish widely applicable drag coefficient and Stanton number correlations for
the heat exchanger integral model, based on average flow variables. The simulation results revealed much more complex flow behavior
than reported in current literature. For each of the almost 100 analyzed cases, the time distributions of the Reynolds number, the drag
coefficient and the Stanton number were recorded, and their average values calculated. Based on these average values, the drag coefficient
and the Stanton number correlations were constructed as polynomial functions of the Reynolds number and the hydraulic diameter. The
comparison of the collected results also allows more general conclusions on efficiency and stability of the heat transfer process in tube
bundles.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Heat exchangers are found in different industrial sectors
where heat has to be transferred between different media.
For the optimal design of a heat exchanger, and for the
determination of its operational parameters and perfor-
mance, the drag and heat transfer between the fluid flow
and the structure have to be known. The characteristics
of a heat exchanger can be established either directly by
experimental measurements (e.g., [1–4]) or by numerical
simulations using different mathematical models (e.g., [5–
8]). We are mentioning only few references as it is impossi-
ble to justly evaluate work of all investigators who made
important contributions.
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The drawback of experimental studies is that they are
time and cost consuming and, therefore, not best suited
for a comprehensive parametrical analysis of different heat
exchanger prototypes. Nevertheless, such analyses are
needed in development of new heat exchanger designs,
and for establishment of their optimal operational param-
eters. Therefore, as a complement to experimental work,
different numerical methods and approaches are increas-
ingly employed for the assessment of heat exchanger
characteristics.

Direct numerical simulations of fluid flow and heat
transfer in heat exchangers are today, despite the fast pro-
gress in computer performance, computationally still too
demanding. Therefore, significant modeling simplifications
have to be done. The most commonly used approach is to
simplify the turbulence modeling and the wall effect treat-
ment. Horvat and Mavko [9] studied an alternative
approach, which is based on hierarchic modeling, where
the model and its computation are split onto two distinct
levels. On the first level, detailed transient three-dimen-
sional numerical simulations of fluid flow and heat transfer
in a geometry similar to a heat exchanger segment are
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Nomenclature

ai coefficients of the NACA wing polynomial
a and b maximum and minimum radius of the ellipsoi-

dal tubes
Af =Vf/l, fluid flow cross-section
A0 wetted surface
c speed of sound, NACA wing chord length
cp specific heat
Cd drag coefficient
d diameter
dt timestep
dh =4Vf/A0, hydraulic diameter
F1 blending function in the SST model
k turbulence kinetic energy
Pr Prandtl number
p pitch between tubes, pressure
Re Reynolds number
REV representative elementary volume
S tube cross-section
St Stanton number
T temperature
t time, NACA wing thickness
tscale average time needed for a flow particle to pass

the simulation domain

u streamwise velocity
V volume
Vf fluid volume in REV
v velocity
y+ non-dimensional wall distance

Greek symbols

e turbulence dissipation rate
k thermal conductivity
l dynamic viscosity
q density
x turbulence frequency

Subscripts/superscripts

f fluid phase
s solid phase
t turbulence model variable
wall wall conditions
x streamwise direction
y horizontal spanwise direction
z vertical spanwise direction
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performed to study the local thermo-hydraulic behavior.
Based on the calculated three-dimensional velocity and
temperature distributions, dependencies of the drag coeffi-
cient and the heat transfer coefficient on average flow
parameters are determined. On the second level, a simpli-
fied integral model [10], which is based on average flow vari-
ables, is applied to simulate the heat transfer over a whole
heat exchanger using the drag and heat transfer coefficient
correlations established by the first level model. The use
of the two-level hierarchic modeling approach has some
clear advantages. As the computationally most demanding
terms of momentum and heat transport are determined on a
separate level, the integral code is fast running, but still
capable to accurately predict the heat flow for a whole heat
exchanger. The accuracy of the heat exchanger integral
model and its applicability crucially depends on the accu-
racy of the used drag and heat transfer coefficient functions,
and the range of the heat exchanger geometrical and the
flow parameters, which are covered by these functions.

The main purpose of the performed work is to get a
detailed insight of the local heat transfer and fluid flow
conditions in different tube bundles, and to establish widely
applicable drag and heat transfer coefficient functions for
the heat exchanger integral model [10]. Three different tube
shapes were analyzed: the cylindrical, the ellipsoidal and
the wing shape. In the performed parametric analysis the
considered fluid flow Reynolds numbers cover the laminar,
the transitional as well as the turbulent flow regime. The
range of the tubes� pitch-to-diameter ratio in the staggered
arrangement was from 1.125 to 2.0. For each performed
numerical simulation, the time averaged drag coeffi-
cient Cd and Stanton number St were calculated. Based
on these calculated discrete values, the analytical functions
Cdðdh;ReÞ and Stðdh;ReÞ were established as polynomial
functions of the hydraulic diameter dh, which was taken
as the most representative geometrical parameter, and the
time averaged Reynolds number Re.

2. Geometrical models

For each heat exchanger tube bundle geometry, numer-
ical simulations were performed for a representative ele-
mentary volume (REV) of the tube bundle. The examples
are presented in Figs. 1–3. As may be seen in the figures,
each bundle consists of tubes in staggered arrangement
with a constant cross-section.

The optimal size and shape of the REV was determined
after extensive testing, considering the overall flow dynam-
ics in the simulation domain, the error introduced due to
the limited simulation domain, and the needed computa-
tional resources. It turned out that in order to get represen-
tative and reliable results, it is more important to simulate
longer time intervals than to enlarge the simulation domain.

To determine the influence of the tubes� shape on the
heat exchanger characteristics, three different tube shapes
were included in the analysis: the cylindrical, the ellipsoidal
and the wing shape. In all cases the height of REV was
equal to its diagonal pitch.



Fig. 2. Heat exchanger tube bundle geometry with elliptical tubes;
instantaneous temperature field 302.1 K 6 T 6 308.2 K; p/d = 1.25.

Fig. 3. Heat exchanger tube bundle geometry with wing-shaped tubes;
instantaneous temperature field 302.2 K 6 T 6 308.2 K; p/d = 1.25.

Fig. 1. Heat exchanger tube bundle geometry with cylindrical tubes;
instantaneous temperature field 304.4 K 6 T 6 308.2 K; p/d = 1.25.

Table 1
Hydraulic diameters dh for the analyzed tube bundle geometries

Ratio, p/d Hydraulic diameter dh (cm)

Cylindrical shape Ellipsoidal shape Wing shape

1.125 0.5824 0.5649 0.5413
1.25 0.9424 0.9142 0.7382
1.5 1.776 1.723 1.638
2.0 3.899 3.782 3.594
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The diameter of the cylindrical tubes was chosen to be
3/8 in. (9.525 mm). The segments with the ellipsoidal and
the wing form of tubes were designed with the same
fractions of the fluid phase and the solid structure as the
segments with the cylindrical tubes

V f;cyl ¼ V f;ell ¼ V f;wing and V s;cyl ¼ V s;ell ¼ V s;wing. ð1Þ
The ellipsoidal tubes were designed with the ratio 1:1.5
between the maximum and the minimum radius (a and
b). Based on this aspect ratio, both radii of the ellipsoidal
tubes can be calculated from the requirement (1), which
implies that the cross-sections of the cylindrical Scyl and
the ellipsoidal Sell tubes have to be the same
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. ð2Þ

The shape of the wing form tubes was based on the NACA
four-digit-series of profiles e.g., NACA0020, where the last
two digits represent the thickness-to-chord ratio t/c [11]. In
general, the NACA profile coordinates are calculated as
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For t/c = 1/5, the coefficients are given by Ladson et al. [11]

a0 ¼ 0:2969; a1 ¼ �0:126; a2 ¼ �0:3516;

a3 ¼ 0:2843; a4 ¼ �0:1015. ð4Þ

To obtain segments with the same fraction of the fluid and
the solid phase as for the cylindrical tubes, t/c was in-
creased to 2/3. Therefore, the ordinates y in function (3)
were multiplied by (2/3)/(1/5). The length of the chord c

was determined from the requirement (1), which implies
that the cross-sections of the cylindrical tubes Scyl and
the tubes with the wing shape Swing have to be the same.

For each shape of the tubes, the simulations were per-
formed for 4 bundle geometries with different values of
the diagonal pitch-to-diameter ratio: p/d = 1.125, 1.25, 1.5
and 2.0. So altogether 12 heat exchanger geometrical mod-
els were investigated, 4 with cylindrical tubes, 4 with ellip-
soidal tubes and 4 with wing-shaped tubes. The analysis
was limited to the bundle arrangements where the pitch in
the x-direction, px is equal to the pitch in the y-direction, py.

To establish the analytical drag coefficient and Stanton
number functions, which are needed for the heat exchanger
integral model, a representative geometrical parameter has
to be identified. It was concluded that the hydraulic diam-
eter dh more universally describes the heat exchanger
geometrical conditions than the pitch-to-diameter ratio
p/d. Therefore, the hydraulic diameter dh was chosen as
the representative geometrical parameter. In Table 1 the
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calculated hydraulic diameters dh for all analyzed tube bun-
dle geometries are presented.

3. Mathematical model

The transient numerical simulations of the fluid flow
and heat transfer in the REV of the analyzed tube bundle
geometries were performed with the CFX 5.7 commercial
code. For the working fluid, material properties of air were
taken. In the simulated cases, the maximum flow speed
remains much lower than the speed of sound and the max-
imum variations of air temperature are only a few degrees.
Therefore, the incompressible flow model was selected.
Since the description of the basic conservation equations
(mass, momentum and thermal energy) used in the CFX
code can be found in any classical fluid dynamics textbook
(e.g., [12]), it is not repeated here.

The tube walls in REV were treated as isothermal with
the temperature Twall = 35 �C. To allow disturbances to
propagate over the geometrical limits of the simulation
domain, the periodic boundary conditions were assigned
in all three directions for all other boundaries.

3.1. Momentum transport

In order to consistently model the unsteady flow, peri-
odicity has to be imposed on the transport equations in
the streamwise direction. In the momentum equation, peri-
odicity was achieved by separating an average pressure
drop Dp across the simulation domain from its residual
part p*

p ¼ p� � x
Dp
2px

� �
. ð5Þ

Thus, the momentum equation can be written as

otðqviÞ þ ojvjðqviÞ ¼ �ojp�dij þ ojðlojviÞ þ
Dp
2px

� �
di;x

þ ojðltojviÞ �
2

3
qkdij. ð6Þ

The simulations were performed for a number of preset
values of the pressure drop Dp along the simulation
domain, as presented in Table 2. For all three analyzed
tube shapes, the same values of the pressure drops were
chosen.
Table 2
Imposed pressure drop Dp along the simulation domain

Ratio, p/d Pressure drop Dp (Pa)

Case 1 Case 2 Case 3 Case 4

1.125 2.5 5.0 10.0 20.0
1.25 0.5 1.0 2.0 4.0
1.5 0.125 0.25 0.5 1.0
2.0 0.015625 0.03125 0.0625 0.125
3.2. Energy transport

In the energy equation, the periodicity of temperature
field was implemented by separating the average tempera-
ture increase DT along the simulation domain from its
residual part T *

T ¼ T � þ x
DT
2px

� �
. ð7Þ

The energy transport equation changes its form to

ot qcpT �� �
þ ojvj qcpT �� �

¼ oj kojT �� �
� qcpvj

DT
2px

� �
dx;j

þ oj
lt

Prt
ojcpT �

� �
; ð8Þ

where the periodic boundary condition are applied to the
residual temperature part T*. Consequently, the isothermal
boundary conditions are also converted to

T �
wall ¼ T wall � x

DT
2px

� �
. ð9Þ

In order to preserve the validity of the assumption of con-
stant material properties, the average temperature increase
was set to DT = 1 �C for all simulations.

3.3. Turbulence transport

The turbulence stresses and the turbulence viscosity lt
were calculated with the transient shear stress transport
(SST) model, which was developed and improved by Men-
ter [13]. It is a combination of the k–e model and the k–x
model of Wilcox [14]. At the wall, the turbulence frequency
x is much more precisely defined than the turbulence dissi-
pation rate e. Therefore, the SST model activates the
Wilcox model in the near-wall region by setting the blend-
ing function F1 to 1.0. Far away from the wall, F1 is 0.0,
thus activating the k�e model for the rest of the flow field

SST model ¼ F 1 � ðk–x modelÞ þ ð1� F 1Þ � ðk–e modelÞ.
ð10Þ

By switching between both models, the SST model gives
similar, if not even superior performance than the low-Rey-
nolds number k–emodels, but with much larger robustness.
More details on the SST model can be found in [15].
Case 5 Case 6 Case 7 Case 8

40.0 80.0 160.0 –
8.0 16.0 24.0 32.0
2.0 4.0 6.0 8.0
0.25 0.5 0.75 1.0
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4. Computational details

For each analyzed REV geometry, the optimal 3D
numerical grid was generated, taking also into account
the case specific fluid flow conditions. The numerical grids
were built with tetrahedra and prisms, which were aligned
with the tube walls to better describe the boundary layer
structures. Since the numerical results can be grid depen-
dent, special care was taken to construct numerical grids
with sufficient resolution and uniformity. As the basic
criterion for the numerical grid resolution, the maximum
non-dimensional wall distance y+ of the first layer of nodes
was taken. During the simulations, the maximum y+ did
not exceed the value of 2.0. Tables 3–5 summarize the num-
ber of grid nodes used for the numerical simulations.

In order to reduce the computational time required to
reach thermal equilibrium, steady-state simulations on a
coarser numerical mesh were performed first. After the
thermal equilibrium was reached, the result file was used
as initial conditions for further transient numerical simula-
tions on a finer mesh. The timestep for the transient calcu-
lations was based on an average time interval needed for a
flow particle to pass the simulation domain

tscale ¼
2px
uf

and dt 6
tscale
80

. ð11Þ
Table 3
Number of grid nodes used in the REV with the cylindrical tubes

Ratio, p/d Number of grid nodes

Case 1 Case 2 Case 3 Case 4

1.125 54,811 54,811 89,428 89,428
1.25 71,445 71,445 71,445 158,669
1.5 89,525 89,525 89,525 89,525
2.0 79,047 79,047 79,047 79,047

Table 4
Number of grid nodes used in the REV with the elliptical tubes

Ratio, p/d Number of grid nodes

Case 1 Case 2 Case 3 Case 4

1.125 57,834 57,834 57,834 180,618
1.25 87,097 87,097 87,097 87,097
1.5 119,309 119,309 119,309 119,309
2.0 95,641 95,641 95,641 95,641

Table 5
Number of grid nodes used in the REV with the wing-shaped tubes

Ratio, p/d Number of grid nodes

Case 1 Case 2 Case 3 Case 4

1.125 82,085 82,085 199,072 199,072
1.25 82,085 82,085 82,085 82,085
1.5 128,882 128,882 128,882 128,882
2.0 110,054 110,054 110,054 110,054
5. Results

A comprehensive parametrical analysis of airflow and
heat transfer in the REV was performed covering a wide
spectrum of heat exchanger conditions.

The following parameters were varied:

• Tube shape: Cylindrical, ellipsoidal and wing shape
tubes were considered (see Figs. 1–3).

• Pitch-to-diameter ratio: For each tube shape, 4 different
pitch-to-diameter ratios were analyzed (see Table 1).

• Imposed pressure drop: For the each tube bundle geo-
metry, the numerical simulations were performed for 7
or 8 imposed pressure drops (see Table 2).

Altogether 93 transient numerical simulations were per-
formed. These simulations provided the necessary data to
determine the drag coefficient and the Stanton number
functions used in the heat exchanger integral model.

The imposed pressure drops Dp (Table 2) across REV
generated flow which was in most cases unsteady. In order
to extract relevant statistical values of physical variables,
the volumetric average velocity

ufðtÞ ¼
1

V f

Z
V̂ f

uðt; xiÞdV ð12Þ
Case 5 Case 6 Case 7 Case 8

114,500 173,550 350,245 –
158,669 222,296 222,296 222,296
180,002 180,002 180,002 180,002
79,047 79,047 116,734 116,734

Case 5 Case 6 Case 7 Case 8

180,618 180,618 213,225 –
137,600 205,476 205,476 205,476
119,309 174,752 174,752 174,752
95,641 186,868 186,868 186,868

Case 5 Case 6 Case 7 Case 8

199,072 242,780 242,780 –
127,330 127,330 213,557 213,557
128,882 128,882 202,294 202,294
230,884 230,884 230,884 230,884
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and temperature

T fðtÞ ¼
1

ufðtÞV f

Z
V̂ f

uðt; xiÞT ðt; xiÞdV ð13Þ

were recorded at each timestep after statistical steady-state
flow conditions were reached. The length of the recording
interval was set on a case-by-case basis. We tried to find
a repeatable pattern of flow behavior and adjust the
recording interval to the pattern period to better capture
the variable statistics. Therefore, the recording intervals
were from 1200 to 4755 timesteps long. In all cases the
recording interval was at least 150 times longer than
the time required for an average flow particle to travel
the length of the simulation domain (11).

Using the obtained velocity distributions uf(t) and tem-
perature distributions Tf(t), the corresponding time distri-
butions of the Reynolds number

ReðtÞ ¼ qufðtÞdh

l
ð14Þ

the drag coefficient

CdðtÞ ¼
2Dp
qu2f ðtÞ

Af

A0

� �
ð15Þ

and the Stanton number

StðtÞ ¼ DT
T wall � T fðtÞ

Af

A0

� �
ð16Þ

were calculated for the each simulated case. Further on,
their time averages Re, Cd and St, and their standard devi-
ations SRe, SCd and SSt were determined.

The presented numerical approach was validated by
Horvat and Mavko [9]. The numerical results for the cylin-
drical tube bundle with pitch-to-diameter ratio p/d = 1.5
were compared to experimental data of Kays and London
[2] for a similar geometry with p/d = 1.414. The compari-
son of the drag coefficient and the Stanton number distri-
butions showed a good agreement between the calculated
and the experimentally obtained values for the whole range
of Reynolds numbers.
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Fig. 5. Drag coefficient polynomial function (18) for the ellipsoidal tubes.
5.1. Drag coefficient functions

The time distributions of Reynolds number Re(t) and
drag coefficient Cd(t) were obtained for the cylindrical,
the ellipsoidal and the wing form of tube cross-sections
and for the all imposed pressure drops. From the time dis-
tributions Re(t) and Cd(t), the statistical average values Re
and Cd were calculated. Using least-square polynomial
regression, the drag coefficient functions Cdðdh;ReÞ were
determined from the calculated set of dh, Re and Cd for
the each form of tube cross-sections. The following drag
coefficient approximation functions were obtained:
• Cylindrical tubes

Cdðdh;ReÞ ¼ 0:2353þ 3:222� 10�10d�4
h þ 1:348d1=2

h

þ 64:47Re
�1 � 1:855� 10�5Re

� 2:118� 10�9Re
2 ð17Þ

• Ellipsoidal tubes

Cdðdh;ReÞ ¼ 0:03050þ 5:724� 10�4d�1
h þ 0:8838d1=2

h

þ 64:30Re
�1 � 5:826� 10�4Re

1=2 ð18Þ

• Wing-shaped tubes

Cdðdh;ReÞ ¼ �0:3020þ 1:825� 10�10d�4
h þ 3:854d1=2

h

þ 2:875Re
�1 � 6:518� 10�7Re

� 7:158� 10�13Re
3 ð19Þ

Figs. 4–6 present contour plots of the drag coefficient
polynomials for the cylindrical (17), the ellipsoidal (18)
and the wing (19) form of tube cross-sections.
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Figs. 4–6 show that for all three tested forms, Cd

monotonically decreases with Re for any given dh. If a
value of Re is set, Cd has its minimum for an unique value
dC
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Fig. 7. Comparison of the drag coefficient polynomial functions with the calcul
ellipsoidal (dh = 0.5649 cm) and the wing-shaped (dh = 0. 5413 cm) tubes; p/d

dC
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Fig. 8. Comparison of the drag coefficient polynomial functions with the calcul
ellipsoidal (dh = 0.9142 cm) and the wing-shaped (dh = 0.7382 cm) tubes; p/d =
of dh. This value of the hydraulic diameter dh is higher for
the cylindrical and the ellipsoidal tubes (�0.012 m) than
for the wing form of tubes (�0.0075 m). The comparison
of the contour plots in Figs. 4–6 shows that the lowest
values of Cd are found for the wing-shaped tubes,
although this region is very narrow. Namely, the Cd func-
tion is much steeper for the wing-shaped tubes than for
the cylindrical and the ellipsoidal tubes. This is related
to a very complex flow behavior that was observed in
the wing-shaped tube bundles for larger values of the
hydraulic diameter dh or when the spacing between the
tubes is increased.

Figs. 7–10 present comparison between the polynomial
functions Cdðdh;ReÞ and the discrete values of Cd that
were obtained from the time distributions (15) for all
three tested forms. In general, the constructed polynomial
functions (17)–(19), give a good approximation of the dis-
crete values. Larger discrepancies exist only for the wing-
shaped tubes with p/d = 1.5 and at higher values of Re
(Fig. 9).

At Reynolds number of a few hundreds, the airflow is
still laminar and the steady-state conditions are reached.
4000 5000
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= 1.125.

4000 5000
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1.25.
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Fig. 10. Comparison of the drag coefficient polynomial functions with the calculated average drag coefficient values for the cylindrical (dh = 3.899 cm), the
ellipsoidal (dh = 3.782 cm) and the wing-shaped (dh = 3.594 cm) tubes; p/d = 2.0.
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Fig. 9. Comparison of the drag coefficient polynomial functions with the calculated average drag coefficient values for the cylindrical (dh = 1.776 cm), the
ellipsoidal (dh = 1.723 cm) and the wing-shaped (dh = 1.638 cm) tubes; p/d = 1.5.
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In this laminar region, Cd decreases with increasing Re
much faster than in the turbulent region (Figs. 7–10).
The transition between laminar and turbulent flow is
usually accompanied with strong flow oscillations, which
consequently increase Cd. The flow periodically changes
direction and the spanwise motion of the fluid becomes
important. At small values of dh (Figs. 7 and 8), the
cylindrical tubes produce much more drag than the ellip-
soidal and the wing-shaped tubes. As the spacing
between the tubes increases, the difference between the
drag coefficient functions becomes smaller. Due to the
fast build-up of fluid spanwise motion in the tube arrays
with the wing form cross-sections, the calculated drag
coefficient Cd increases and at p/d = 2.0 it reaches similar
values than those obtained for the cylindrical tubes
(Fig. 10).

Large oscillations were observed in the tube bundle
with the wing-shaped tubes at the pitch-to-diameter ratio
p/d = 1.5. These oscillations are characterized by the sep-
aration of the boundary layer on the tube walls. It seems
that a specific location of the separation triggers strong
unsteady spanwise streams that increase Cd. Similar
behavior of the drag coefficient can be observed also in
the diagrams of the experimental data for the ellipsoidal
tubes recorded by Keys and London [2].
5.2. Stanton number functions

Similarly, using the recorded time distributions of
Stanton number St(t), the time averages St were calcu-
lated for the cylindrical, the ellipsoidal and the wing-
shaped tubes and for the all imposed pressure drops.
Based on the calculated time averages St, the Stanton
number approximation functions Stðdh;ReÞ were deter-
mined using the least-square polynomial regression. The
following Stanton number approximation functions were
obtained:

• Cylindrical tubes

Stðdh;ReÞ ¼ �0:02388þ 6:774� 10�12d�4
h � 0:01714d1=2

h

þ 6:553
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dh=Re

p
þ 2:090� 10�7Re

�3

þ 1:271Re
�1=2 þ 7:999� 10�6Re

� 2:945� 10�13Re
3 ð20Þ
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Fig. 12. Stanton number polynomial function (21) for the ellipsoidal
tubes.
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Fig. 13. Stanton number polynomial function (22) for the wing-shaped
tubes.
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• Ellipsoidal tubes

Stðdh;ReÞ ¼ 0:03716þ 1:529� 10�10d�3
h

� 5:155� 10�5d�1
h þ 0:02325d1=2

h

þ 105:9
ffiffiffiffiffi
dh

p
=Reþ 0:7523Re

�1

þ 2:804� 10�4Re
1=2 ð21Þ

• Wing-shaped tubes

Stðdh;ReÞ ¼ �0:01863þ 1:331� 10�11d�4
h

þ 0:1185d1=2
h þ 9:180

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dh=Re

p

þ 0:2078Re
�1=2 þ 3:271� 10�7Re

� 2:530� 10�15Re
3 ð22Þ

Figs. 11–13 present contour plots of the Stanton num-
ber polynomials for the cylindrical (20), the ellipsoidal
(21) and the wing-shaped (22) tubes. The shape of the
Stanton number contour plots (Figs. 11–13) is similar to
the shape of the drag coefficient contour plots (Figs. 4–
6). The reason for this similarity is that in the range of
considered Reynolds numbers the heat transfer crucially
depends on the momentum transfer from the fluid flow
to the structure walls. The Stanton number monotonically
decreases with increasing Re for any given dh. This means
that the flow velocity increases faster than the convective
heat transfer from the isothermal walls to the fluid. There-
fore, the average fluid temperature Tf(t), as defined by
(13), decreases with increasing Re. Like the drag coeffi-
cient Cd, also the Stanton number St experiences a mini-
mum at an unique value of the hydraulic diameter dh
for a given value of Re; at small dh the Stanton number
St first rapidly decreases and then gradually increases with
increasing dh.
dh [m] 

1000 2000 3000
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1
0.025

2
0.030

3
0.035

4
0.040

5
0.045

6
0.050

7
0.060

8
0.070

9
0.080

10
0.100

11
0.120

Re

Fig. 11. Stanton number polynomial function (20) for the cylindrical
tubes.
To get an impression how exactly the Stanton number
polynomial functions (20)–(22) approximate the calcu-
lated discrete values St, Figs. 14–17 present their compar-
ison for all simulated cases. The constructed polynomial
functions (20)–(22) give a satisfactory approximation of
the discrete values. Larger differences can be only
observed for the wing-shaped tubes at p/d = 1.5 for larger
values of Re, where the flow oscillations occur.

The Stanton number St values show similar behavior as
the drag coefficient Cd distributions; in the laminar region
St decreases faster with increasing Re than in the turbulent
region. On the other hand, the transitional behavior that
is evident from the calculated values of Cd (Figs. 7–10)
shows almost no influence on the St values. Figs. 14–17
show that St is larger for the cylindrical than for the ellip-
soidal and the wing-shaped tubes. The difference between
St distributions is larger for small dh and it decreases as
p/d becomes larger.
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Fig. 15. Comparison of the Stanton number polynomial functions with the calculated average Stanton number values for the cylindrical (dh = 0.9424 cm),
the ellipsoidal (dh = 0.9142 cm) and the wing-shaped (dh = 0.7382 cm) tubes; p/d = 1.25.
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Fig. 16. Comparison of the Stanton number polynomial functions with the calculated average Stanton number values for the cylindrical (dh = 1.776 cm),
the ellipsoidal (dh = 1.723 cm) and the wing-shaped (dh = 1.638 cm) tubes; p/d = 1.5.
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Fig. 14. Comparison of the Stanton number polynomial functions with the calculated average Stanton number values for the cylindrical (dh = 0.5824 cm),
the ellipsoidal (dh = 0.5649 cm) and the wing-shaped (dh = 0.5413 cm) tubes; p/d = 1.125.
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6. Conclusions

Numerical analysis of heat transfer was performed for
the heat exchanger segments with the cylindrical, the ellip-
soidal and the wing-shaped tubes in the staggered arrange-
ment. The purpose of the analysis was to get a detailed
insight of the local heat transfer and fluid flow conditions
in a heat exchanger and to establish widely applicable drag
coefficient and Stanton number functions for the heat
exchanger integral model [10].

Almost 100 three-dimensional transient numerical simu-
lations were performed for the tube bundle cross-flow, con-
sidering different tube shapes, pitch-to-diameter ratios and
Reynolds numbers. It is important to mention that we
encountered much more complex physical behavior than
it was reported in the available literature (e.g., [16–18]).
Large flow oscillations and semi-stochastic motion of the
flow in the spanwise direction were observed as the flow
regime changes, especially for the wing-shaped tubes.

From the statistical steady-state simulation results of the
each analyzed case, the time distributions of the Reynolds
number Re(t), the drag coefficient Cd(t) and the Stanton
number St(t) were obtained and their average values calcu-
lated. By comparing the calculated time average values of
Cd and St for the three considered tube shapes, some gen-
eral conclusions on thermal performance were made. The
general behavior of Cd and St is similar for all three tube
shapes. The drag coefficient Cd as well as the Stanton num-
ber St monotonically decrease with increasing Re for any
hydraulic diameter dh. On the contrary, Cd and St exhibit
a minimum at a certain value of dh for any given Re. In gen-
eral, the values of Cd and St are lower for the ellipsoidal
and the wing-shaped tubes than for the cylindrical tubes.

The time average values Re, Cd and St were used to con-
struct the polynomial functions Cdðdh;ReÞ and Stðdh;ReÞ
for the cylindrical, the ellipsoidal and the wing-shaped
tubes. The constructed Cdðdh;ReÞ and Stðdh;ReÞ functions
are much stepper for the wing shaped tubes than for the
cylindrical and the ellipsoidal tubes. Although, the differ-
ences between Cdðdh;ReÞ and Stðdh;ReÞ functions are large
at small dh, they become smaller as dh increases. This
allows us to conclude that the influence of different forms
of bounding surfaces diminishes with increasing dh.
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