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A fast-running computational algorithm based on the volume averaging technique (VAT) is

developed and solutions are obtained using the Galerkin method (GM). The goal is to extend

applicability of the GM to the area of heat exchangers in order to provide a reliable

benchmark for numerical calculations of conjugate heat transfer problems. Using the VAT,

the computational algorithm is fast-running, but still able to present a detailed picture of

temperature fields in air flow as well as in the solid structure of the heat sink. The calculated

whole-section drag coefficient Cd and Nusselt number Nu were compared with finite-volume

method (FVM) results and with experimental data to verify the computational model. The

comparison shows good agreement. The present results demonstrate that the selected

Galerkin approach is capable to perform heat exchanger calculations where the thermal

conductivity of the solid structure has to be taken into account.

1. INTRODUCTION

Cross-flow through the solid structure is found in a number of different
applications, especially in heat exchanging devices. Although the problem has been
widely studied, there are still unresolved issues, which deserve researchers’ attention.

The widespread use of heat exchangers in many industrial sectors caused their
development to take place in a number of rather unrelated areas. Furthermore, design
solutions were based solely on experimental work because of the absence of today’s
powerful computers and lack of suitable numerical methods (Antonopoulos [1],
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Barsamian and Hassan [2]). The nature of experimental work limited researchers to
study only a few heat exchanger geometries and a few variations in their geometry
parameters. Furthermore, the flow conditions were often limited by available
experimental setups. These disadvantages, compared to numerical modeling, did not
allow researchers to explore a wide range of parameters in order to find an optimal
geometry. Rather, they limited the engineer’s choices to well-tested and proven
designs.

On the other hand, direct numerical simulation of transport phenomena in each
material phase (or component) is theoretically possible, but it demands enormous
computational resources even for simple geometries. This is the reason why direct
approaches are rarely seen in practical engineering applications. In order to resolve
most of the flow features and at the same time keep the model simple enough to serve
as an engineering tool, an averaging of fluid and heat flow variables has to be per-
formed. Recently, a unified approach based on the volume averaging technique

NOMENCLATURE

Ac flow contact area of the test section

Ag heat sink ground area

Ao interface area

A1 ¼ 7M4={M3[1þ exp(g)]}
A2 ¼ 7A17M4=M3

A? channel flow area

c specific heat

Cd whole-section drag coefficient

Cl local drag coefficient

d pin-fin diameter

dh hydraulic diameter¼ (4Vf=Ao)

D1 ¼ uF1

D2 ¼F4S1=S2

D3 ¼F5S1=S2þF4

D4 ¼ uF1S1=S2

F1 ¼ af Pr Res(dh=L)

F4 ¼af(dh
2=H2)

F5 ¼Nus(dhS)

FVM finite-volume method

GM Galerkin method

h arbitrary function, heat transfer coeffi-

cient

H height

K linearized drag coefficient ¼ (M3u)

M2 ¼ af=Res(dh
2=H2)

M3 ¼ 1=2Cl(dhS)

M4 ¼ dh=L

L length of the test section

Nu whole-section Nusselt number

Nus pore Nusselt number (¼ hdh=lf)
p pressure

Dp whole-section pressure drop

px pitch between pin-fins in x direction

py pitch between pin-fins in y direction

Pr Prandtl number

Q heat flow

Reh Reynolds number ¼ (udh=vf)

Res pore Reynolds number ¼ (Udh=vf)

S specific surface¼ (Ao=V)

S1 ¼as (dh
2=H2)

S2 ¼Nus(lf=ls)(dhS)
T temperature

Tg temperature at bottom, z¼ 0 position

Tin temperature at inflow, x¼ 0 position

u velocity in streamwise direction

U velocity scale

v velocity vector

V representative elementary volume

W mechanical work

x general spatial coordinate, streamwise

coordinate

z vertical spanwise coordinate

a volume fraction

l thermal conductivity

L area of integration

m dynamic viscosity

n kinematic viscosity

r density

Subscript=Superscript

f fluid phase

s solid phase

Symbols

� phase average variables

^ dimensional variables

½ � whole-section average variables
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(VAT) has been developed and utilized for calculations of heat exchangers with
isothermal (Horvat and Catton [3]) and heat conducting structures (Horvat et al. [4]).

In applying the VAT to a system of equations, transport processes in a heat
exchanger are modeled as porous media flow. This generalization allows us to unify
the heat transfer calculation techniques for different kinds of heat exchangers and
their structures. The case-specific geometric arrangements, material properties, and
fluid flow conditions enter the computational algorithm only as precalculated
coefficients, which require additional modeling. This clear separation between the
model and the case-specific coefficients simplifies the computational algorithm.
Therefore, the algorithm is fast-running, but still able to present a detailed picture of
temperature fields in air flow as well as in a solid structure of a heat sink.

In the present article, the VAT is used to model heat transfer processes in an
electronic device heat sink. The geometry and boundary conditions closely follow the
heat sink configuration studied experimentally in the Morrin-Martinelli-Gier
Memorial Heat Transfer Laboratory at the University of California, Los Angeles.
The system of porous media flow equations is solved semianalytically using the
Galerkin method (GM). To demonstrate the capability and accuracy of the selected
method, the results are compared with experimental data as well as with other
numerical results obtained with the finite–volume method (FVM). Despite simpli-
fications, which are needed to solve the problem semianalytically, the comparison
shows good agreement.

In the past, the Galerkin solution technique was widely used for transport
phenomena-related problems (Catton [5] and [6], McDonough and Catton [7],
Howle [8]). It should be mentioned that the Galerkin approach is not the optimal
method for this kind of calculation, due to serious limitations in the method
applicability to more realistic geometries and boundary conditions. Nevertheless, the
case presented here is an important benchmark on which other numerical results can
be tested.

2. GOVERNING EQUATIONS FOR UNIFORM FLOW THROUGH HEAT SINK

The VAT was initially proposed in the 1960 s by Anderson and Jackson [9],
Slattery [10], Marle [11], Whitaker [12], and Zolotarev and Redushkevich [13]. As the
main intention of this article is to present the Galerkin solution procedure for
the heat sink cross-flow, detailed description of the VAT will be omitted. Many of
the important details and examples of applications can be also found in Dullien [14],
Kheifets and Neimark [15], Adler [16], and Horvat [17].

To describe fluid and heat flow in an electronic device heat sink, momentum
and energy transport equations for fluid flow, as well as an additional energy
equations for the solid structure are needed. Applying the VAT, the transport
equations are averaged over a representative elementary volume (REV), which
produces porous media flow equations.

2.1. Momentum Transport

The derivation of the momentum transport equation for porous media flow
starts from the momentum equation for steady-state incompressible flow, where the
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effect of gravity is neglected. For uniform porous media (af is a constant), the
momentum equation can be written as

afrf�vvj
q�vvi
qxj

¼ �af
q�ppf
qxi

þ afmf
q2�vvi
qx2j

� 1

V

Z
Ao

pdLi þ
mf
V

Z
Ao

qvi
qxj

dLj ð1Þ

The integrals in Eq. (1) are a consequence of the volumetric averaging. They capture
the momentum transport on the fluid–solid interface. Similar to turbulent flow, a
separate model in the form of a closure relation is needed. In the present case, the
integrals are replaced with the following empirical drag relation:

1

2
Clrf�vv

2
i Ao ¼ �

Z
Ao

pdLi þ mf

Z
Ao

qvi
qxj

dLj ð2Þ

where Cl is the local value of the drag coefficient, which depends on the local
Reynolds number. Reliable empirical data for the local drag coefficient Cl were
found in Launder and Massey [18] and in Kays and London [19].

Inserting the empirical correlation (2) into Eq. (1), the momentum equation for
porous media flow is given as

afrf�vvj
q�vvi
qxj

¼ �af
q�ppf
qxi

þ af mf
q2�vvi
qx2j

þ 1

2
Clrf�vv

2
i S ð3Þ

It is additionally assumed that the volume average velocity through the heat sink is
unidirectional v¼ {u,0,0}, and changes only in the vertical direction. This means that
the pressure force across the entire simulation domain is balanced with shear forces.
Therefore, the momentum transport equation is reduced to

� afmf
q2�uu
qz2

þ 1

2
Clrf�uu

2S ¼ Dp
L

ð4Þ

2.2. Energy Transport in Fluid

The energy transport equation for fluid flow is developed from the energy
transport equation for steady-state incompressible flow. For uniform porous media
it is written as

afrf cf�vvj
q �TTf

qxj
¼ aflf

q2 �TTf

qx2j
þ lf

V

Z
Ao

qT
qxj

dLj ð5Þ

The integral in Eq. (5) represents the interphase heat exchange between fluid flow
and the solid structure, and it requires additional modeling. In the present case an
empirical linear relation between the fluid and the solid temperature is taken as an
appropriate model for the interphase heat flow:

hð �TTf � �TTsÞAo ¼ �lf

Z
Ao

qT
qxj

dLj ð6Þ
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where h is the local value of the heat transfer coefficient, which depends on the local
Reynolds number. The data for the local heat transfer coefficient h were taken
from Žukauskas and Ulinskas [20] for low Reynolds numbers, whereas for higher
Reynolds numbers, the experimental data from Kays and London [19] were more
appropriate.

Inserting the relation (6) into Eq. (5) the energy transport equation for fluid
flow can be written as

afrf cf�vvj
q �TTf

qxj
¼ aflf

q2 �TTf

qx2j
� hð �TTf � �TTsÞS ð7Þ

The energy transport equation for fluid flow (7) is further simplified with the velocity
unidirectional assumption. Therefore, the temperature field in the fluid is formed as a
balance between thermal convection in the streamwise direction, thermal diffusion,
and the heat, which is transferred from the solid structure to fluid flow. Thus, the
differential form of the energy equation for the fluid is

afrf cf �uu
q �TTf

qx
¼ aflf

q2 �TTf

qz2
� hð �TTf � �TTsÞS ð8Þ

2.3. Energy Transport in Solid

In a solid phase, thermal diffusion is the only mechanism of heat transport.
Therefore, the energy transport equation for the solid structure is reduced to the
simple diffusion equation

0 ¼ asls
q2 �TTs

qx2j
þ ls

V

Z
Ao

qT
qxj

dLj ð9Þ

where the integral captures the interphase heat exchange. Closure is obtained by
substituting the linear relation

hð �TTf � �TTsÞAo ¼ ls

Z
Ao

qT
qxj

dLj ð10Þ

in Eq. (9). The VAT energy transport equation for the solid structure is now
written as

0 ¼ asls
q2 �TTs

qx2j
þ hð �TTf � �TTsÞS ð11Þ

The heat sink structure in each REV is only loosely connected in horizontal direc-
tions (see Figure 1). As a consequence, only the thermal diffusion in the vertical
direction is in balance with the heat leaving the structure through the fluid–solid
interface, whereas the thermal diffusion in the horizontal directions can be neglected.
This simplifies the energy equation for the solid structure to

0 ¼ asls
q2 �TTs

qz2
þ hð �TTf � �TTsÞS ð12Þ
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3. SIMULATION SETUP

The results from numerical simulations are compared with the experimental
data taken in the Morrin-Martinelli-Gier Memorial Heat Transfer Laboratory at the
University of California, Los Angeles. Therefore, the geometry of the simulation
domain follows the geometry of the experimental test section, where the experimental
data described by Rizzi et al. [21] were obtained.

3.1. Geometry

The general arrangement of the heat sink pin-fins is given in Figure 1. The
length L as well as the width W of the heat sink are 0.1143m (4.5 in), whereas the
height H is 0.0381m. (1.5 in). The conductive base plate, which connects pin-fins, is
0.00635m (0.25 in) high.

The simulation domain consists of 31 rows of pin-fins in the streamwise
direction and 31 rows of pin-fins in the transverse direction. The diameter of the pin-
fins is d¼ 0.003175m (0.125 in). The pitch-to-diameter ratio in the streamwise
direction is set to px=d¼ 1.06, and in the transverse direction to py=d¼ 2.12.

The material properties are also taken from the experimental cases. The heat
sink consists of cast aluminum alloy 195 and it is exposed to air cross-flow. The
entering flow profile is fully developed due to two rows of honeycomb flow
straighteners that were placed in front of the test section. A thermal isolation layer
placed between the heater and the aluminum base sets the isothermal conditions at
the base bottom.

3.2. Boundary Conditions

The boundary conditions of the model equations (4), (8), and (12) attempt to
represent the experimental situation described previously. As the experimental data
were obtained for heating rates Q¼ 50, 125, and 220W, the numerical simulations
were performed for the same heat inputs.

Figure 1. Experimental test section with the pin-fins arrangement.
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For the momentum transport equation (4), the no-slip boundary conditions are
implemented for both walls that are parallel with the flow direction:

�uuð0Þ ¼ 0 �uuðHÞ ¼ 0 ð13Þ

The preset values of the whole-section pressure drop Dp are summarized in Table 1.
For the fluid-phase energy transport equation (8), the simulation domain

inflow and the bottom wall are taken as isothermal,

�TTfð0; zÞ ¼ Tin
�TTfðx; 0Þ ¼ Tg ð14Þ

whereas the upper boundary is adiabatic,

q �TTf

qz
ðx;HÞ ¼ 0 ð15Þ

The inflow boundary values Tin and the bottom wall values Tg are summarized in
Tables 2 and 3.

For the solid-phase energy transport equation (12), the bottom wall was pre-
scribed as isothermal, whereas the top wall was assumed to be adiabatic:

�TTsðx; 0Þ ¼ Tg
q �TTs

qz
ðx;HÞ ¼ 0 ð16Þ

The bottom wall values Tg are summarized in Table 3.
It has to be noted that the assumption of an isothermal bottom wall, Eqs. (14)

and (16), differs significantly from the experimental setup, where the pin-fins were
connected with a conductive base plate. This approximation can be made, if the
height of the base plate is small and its heat conductivity is high enough. As simu-
lations will show, this assumption has a minor effect on the results.

Table 1. Whole-section pressure drop Dp [Pa] at 50, 125, and 220W

Dp [Pa] at 50W 5.0 10.0 20.0 40.0 74.72 175.6 266.5 368.6

Dp [Pa] at 125W 5.0 10.0 20.0 40.0 74.72 179.3 274.0 361.1

Dp [Pa] at 220W 5.0 10.0 20.0 40.0 74.72 180.6 280.2 361.1

Table 2. Inflow temperature Tin [�C] at 50, 125, and 220W

Tin [
�C] at 50W 23.0 23.0 23.0 23.0 23.02 23.02 23.04 22.85

Tin [
�C] at 125W 23.0 23.0 23.0 23.0 23.16 23.21 23.05 22.81

Tin [
�C] at 220W 23.0 23.0 23.0 23.0 23.07 22.96 22.97 22.90

Table 3. Bottom temperature Tg[
�C] at 50, 125, and 220W

Tg [
�C] at 50W 54.9 43.43 37.2 33.0 30.3 27.9 27.3 26.64

Tg [
�C] at 125W 103.8 74.6 58.8 48.15 41.8 35.73 33.6 32.25

Tg [
�C] at 220W 168.0 114.8 87.0 68.0 56.4 45.2 42.3 40.4
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4. SOLUTION METHODS

In spite of the availability of more general numerical methods, we tried to find
a semianalytical solution of Eqs. (4), (8), and (12) that can be used as a reference
solution of the conjugate heat transfer problems. For that purpose the semianalytical
Galerkin approach was used.

4.1. Scaling Procedure

In order to construct the Galerkin solution method, the developed transport
equations (4), (8), and (12), as well as the appropriate boundary conditions (13)–(16),
need to be transformed into dimensionless form. The dimensionless form of equa-
tions enables one to use more general algorithms that are already developed and are
publicly accessible.

As all of the equation variables are already averaged over the appropriate Vk,
the averaging symbol will be omitted. Furthermore, to distinguish the dimensional
from the nondimensional form of equations, the caret symbol^will be used to mark
dimensional variables in this section.

Equation (17) presents scaling factors for the spatial coordinates x and z:

x̂x ¼ L̂Lx ẑz ¼ ĤHz ð17Þ

Scaling factors for the kinematic variables are presented in Eq. (18):

ûu ¼ ÛUu p̂p ¼ r̂rfÛU
2p ÛU ¼

ffiffiffiffiffiffi
Dp̂p
r̂rf

s
ð18Þ

The scaling relations for fluid and solid temperatures are given in Eq. (19):

T̂Tg � T̂Tf ¼ T̂Tg � T̂Tin

� �
Tf T̂Tg � T̂Ts ¼ T̂Tg � T̂Tin

� �
Ts ð19Þ

Applying the scaling laws (17) and (18) to the momentum transport equation
(4) yields

� af
Res

d̂d2h
ĤH2

 !
q2u
qz2

þ 1

2
Cl d̂dhŜS
� �

u2 ¼ d̂dh

L̂L
ð20Þ

Finally, the momentum transport equation can be written as

�M2
q2u
qz2

þM3u
2 ¼ M4 ð21Þ

where M2, M3, and M4 are constants. Based on the scaling laws, the boundary
conditions (13) change to

uð0Þ ¼ 0 uð1Þ ¼ 0 ð22Þ

When the scaling laws (17)–(19) are introduced to the fluid-phase energy
transport equation (8), the equation changes to

af PrRes
d̂dh

L̂L

 !
u
qTf

qx
¼ af

d̂d2h
ĤH2

 !
q2Tf

qz2
�Nus d̂dhŜS

� �
ðTf � TsÞ ð23Þ
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Equation (23) can be further simplified to

F1u
qTf

qx
¼ F4

q2Tf

qz2
� F5ðTf � TsÞ ð24Þ

where F1, F4, and F5 are constants. Based on the scaling laws, the boundary con-
ditions (14) and (15) change to

Tfð0; zÞ ¼ 1 Tfðx; 0Þ ¼ 0
qTf

qz
ðx; 1Þ ¼ 0 ð25Þ

As in the previous case, inserting the scaling laws (17)–(19) to the solid-phase
energy transport equation (12) gives the following form:

0 ¼ as
d̂d2h
ĤH2

 !
q2Ts

qz2
þNus

l̂lf
l̂ls

 !
d̂dhŜS
� �

ðTf � TsÞ ð26Þ

Next, the solid-phase energy transport equation (26) is reduced to

0 ¼ S1
q2Ts

qz2
þ S2ðTf � TsÞ ð27Þ

where S1 and S2 are constants. The solid structure boundary conditions (16) also
change to

Tsðx; 0Þ ¼ 0
qTs

qz
ðx; 1Þ ¼ 0 ð28Þ

4.2. Galerkin Solution Procedure

The momentum transport equation (21) is first linearized to

�M2
q2u
qz2

þ Ku ¼ M4 ð29Þ

with K¼M3u being a constant. The solution of the linearized momentum transport
equation (29) is expected to be of the form

u � expðgzÞ ð30Þ

where g is a constant. Taking into account the boundary conditions given by
Eq. (22), the fluid velocity is

u ¼ A1 expðgzÞ þ A2 expð�gzÞ þM4

K
ð31Þ

where g, A1, and A2 are constants defined from boundary conditions.
To find the solution to the system of energy transport equations (24) and (27),

both equations are combined into the single expression

uF1
qTs

qx
þ F4

S1

S2

q4Ts

qz4
� F5

S1

S2
þ F4

� �
q2Ts

qz2
� uF1

S1

S2

q3Ts

qx qz2
¼ 0 ð32Þ
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which can be written in a more compact form as

D1
qTs

qx
þD2

q4Ts

qz4
�D3

q2Ts

qz2
�D4

q3Ts

qx qz2
¼ 0 ð33Þ

where D2, D3 are constants and D1, D4 are functions of z.
Next, separation of variables in the following form is used to find the solution

of Eq. (33):

Ts ¼ XðxÞZðzÞ ð34Þ

with the boundary conditions

Xð0Þ ¼ 1 Zð0Þ ¼ 0
qZ
qz

ð1Þ ¼ 0 ð35Þ

When Eq. (34) is inserted in Eq. (33), the following differential equation is obtained:

D1ZX
I þD2Z

IVX�D3Z
IIX�D4Z

IIXI ¼ 0 ð36Þ

The solution in the z direction of Eq. (36) is anticipated to be a finite set of ortho-
gonal functions,

Z ¼ AnZn Zn ¼ sinðgnzÞ gn ¼
2n� 1

2
p ð37Þ

which satisfy the boundary conditions (35). Introducing Eq. (37) into Eq. (36) brings
us to

D1X
IðAnZnÞ þD2XðAng4nZnÞ þD3XðAng2nZnÞ þD4X

IðAng2nZnÞ ¼ error ð38Þ

and in a more compact form to

XIAn D1 þ g2nD4

� �
Zn þ XAn g4nD2 þ g2nD3

� �
Zn ¼ error ð39Þ

Figure 2. Analysis of results consistency, Q ¼ 150W.
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As the series is finite, there is a certain discrepancy associated with the expansion.
This error is orthogonal to the set of functions used for the expansion and can be
reduced with multiplication by Zm (m¼ 1, N) and further integration from 0 to 1:

XIAn

Z1

0

D1 þ g2nD4

� �
ZnZm dzþ XAn

Z1

0

g4nD2 þ g2nD3

� �
ZnZm dz ¼ 0 ð40Þ

In matrix form, Eq. (40) is written as

XIAnInm þ XAnJnm ¼ 0 ð41Þ

where Inm and Jnm are z-dependent integrals. As the x- and z-dependent parts of
Eq. (41) can be separated,

b ¼ �XI
m

Xm
¼ AnJnm

AnInm
ð42Þ

separate equations are written for the x direction,

XI
m þ bmXm ¼ 0 ð43Þ

and for the z direction,

AnJnm � bmAnInm ¼ 0 ð44Þ

The solution of Eq. (43) is obtained by integration:

Xm ¼ C expð�bmxÞ ð45Þ

where C and bm are arbitrary constants. Rearranging Eq. (44), an extended eigen-
value problem can be formed as

ðJnm � bmInmÞAn ¼ 0 ð46Þ

The system of Eq. (46) has a nontrivial solution if

DetðJnm � bmInmÞ ¼ 0 ð47Þ

From this condition the system eigenvalues bm are determined. Furthermore, each
eigenvalue bm corresponds to a specific m vector of An.

Using the solutions of Eq. (43) and the matrix system (47), one can construct
the solid structure temperature field:

Ts ¼ CiXiAinZn ð48Þ

Reintroducing Eq. (27), the fluid temperature field is then given by

Tf ¼ CiXiAin 1þ S1

S2
g2n

� �
Zn ð49Þ

The coefficients Ci are found from the initial condition Tfð0; zÞ ¼ 1:

CiAin 1þ S1

S2
g2n

� �
Zn ¼ 1 ð50Þ
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Figure 3. Whole-section drag coefficient Cd;Q ¼ 50W (a), 125W (b), and 220W (c).
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Figure 4. Whole-section Nusselt number Nu, Q ¼ 50W (a), 125W (b), and 220W (c).
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Again, using the same procedure by multiplying Eq. (50) with Zm (m¼ 1, N) and
integrating it from 0 to 1,

CiAin 1þ S1

S2
g2n

� �Z1

0

ZnZm dz ¼
Z1

0

Zmdz ð51Þ

Figure 6. Temperature field in the fluid (a) and the solid (b); GM (black) and FVM (gray); Reh¼ 159,

Q¼ 125W.

Figure 5. Fluid velocity cross section, Q ¼ 125W, GM.
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the orthogonality condition reduces Eq. (51) to

CiAim 1þ S1

S2
g2m

� �
Im ¼ Jm ð52Þ

where Im and Jm are analytically calculated integrals. Writing Eq. (52) in a matrix
form,

AimCi ¼
Jm

1þ S1=S2g2m
� 	

Im
ð53Þ

the unknown coefficients Ci are calculated with inversion of the matrix system (53).

5. RESULTS

Simulations of the heat sink thermal behavior were performed for the pressure
drops Dp and the boundary temperatures Tin and Tg, which are summarized in
Tables 1, 2, and 3. Calculations were performed at heating powers Q¼ 50, 125, and
220W to match the experimental data obtained by Rizzi et al. [21].

Figure 7. Temperature field in the fluid (a) and the solid (b); GM (black) and FVM (gray); Reh ¼ 253;

Q ¼ 125W.
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5.1. Comparison of Whole-Section Values

The imposed pressure drop Dp causes air flow across the heated solid structure.
As the structure is cooled, a steady temperature field is formed in the air flow as well
as in the thermally conductive aluminum. Based on the calculated velocity and
temperature fields, the whole-section drag coefficient,

Cd ¼
2DpA?

rf½u�2Ao

ð54Þ

and the whole-section Nusselt number,

Nu ¼ Qdh
ðTg � TinÞAglf

ð55Þ

were estimated as functions of Reynolds number Reh. In Eq. (54), ½u� marks average
streamwise velocity in the whole simulation domain.

The whole-section values of the drag coefficient Cd and Nusselt number Nu
calculated with the Galerkin method (GM) are compared with the results of the
finite-volume method (FVM) (Horvat [17]) and with the experimental data taken by
Rizzi et al. [21]. As the experimental methods cannot give a detailed picture of

Figure 8. Temperature field in the fluid (a) and the solid (b); GM (black) and FVM (gray); Reh ¼ 371;

Q ¼ 125W.
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velocity and temperature fields, the comparisons of these whole-section values serve
as the verification of the constructed physical model and validate the developed
numerical code.

The consistency analysis was also performed. For this purpose the simulations
were done with N¼ 2, 4, 8, 16, 32, and 64 eigenfunctions (37), and the whole-section
Nusselt number Nu was calculated for different Reynolds numbers. Figure 2 presents
only a part of the results, in order to prove consistency of the developed procedure.
It is evident that for Reynolds number Reh¼ 1993, the whole-section Nusselt
number Nu calculated with only 2 eigenfunctions differs for 1.4% from the one
calculated with 64 eigenfunctions. As the number of eigenfunctions used increases,
the difference decreases even further.

Figures 3 show the whole-section drag coefficient Cd [Eq. (54)] as a function of
Reynolds number Reh at thermal powers Q¼ 50, 125, and 220W. The results cal-
culated with the GM (marked with Galerkin) are close to the results obtained by the
FVM (marked with finite volumes) as well as to the experimental data (marked with
Experiment). Slight discrepancy from the experimental data at higher Reynolds
number is due to transition to turbulence, which is evident in the experimental
results, but is not captured by the model. For thermal power Q¼ 125 W, Figure 3b
shows good agreement between the GM results, the FVM results, and the
experimental data. The difference is visible only at the last experimental point

Figure 9. Temperature field in the fluid (a) and the solid (b); GM (black) and FVM (gray); Reh ¼ 543;

Q ¼ 125W.
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(Reh¼ 1912), where the transition effects are already present. Although Figure 3c
still shows good agreement between both models and experimental data, larger
discrepancies are already visible. Namely, at thermal power Q¼ 220W the air flow
through the heat sink is strongly influenced by thermal stratification, due to intensive
heating at the bottom. The resulting buoyancy effects cause model deficiencies as
well as problems with the representation of collected experimental data.

Figures 4 show the whole-section Nusselt number Nu [Eq. (55)], as a function
of Reynolds number Reh at thermal powers Q¼ 50, 125, and 220W. The Nusselt
number distributions at thermal power Q¼ 50W are presented in Figure 4a. They
show a larger difference between the GM and FVM results on one side and the
experimental data on the other. The difference of approximately 10% is steady
throughout the whole range of tested Reynolds numbers Reh, which is believed to be
a consequence of systematic modeling or experimental error. Figure 4b, which shows
the whole-section Nusselt number Nu at thermal power Q¼ 125W, displays only a
minor difference of approximately 5% as the Reynolds number increases from
Reh¼ 762 to Reh¼ 1,893. At thermal power Q¼ 220W (Figure 4c), the difference
between calculated values and experimental data becomes negligible.

Figure 10. Temperature field in the fluid (a) and the solid (b); GM (black) and FVM (gray); Reh ¼ 766;

Q ¼ 125W.
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5.2. Temperature Distribution in Heat Sink

The detailed temperature fields at different Reynolds number Reh give an
insight into the heat transfer conditions in the studied heat sink. For calculations
performed by the GM, 346140 mesh points in the x and z directions were used to
simulate heat transfer processes in the fluid and solid phases. As the accuracy of the
semianalytical GM is essentially connected with the number of orthogonal functions
used for expansion, Eq. (37), 45 basis functions are used in all cases presented. Based
on the consistency analysis performed, we are convinced that the maximum asso-
ciated error can reach up to 1% for the highest tested Reynolds number Reh.

It should be also noted that although different heating power Q is used at the
bottom, there exists a similarity in forced–convection heat removal from the heat
sink structure. Namely, higher heat input causes higher absolute temperature levels,
whereas the form of isotherms changes only slightly, due to modification in air
material properties. Therefore, this article presents the velocity profiles and tem-
perature fields only for thermal power Q¼ 125W.

Figure 5 gives velocity profiles of the air flow at different Reynolds numbers
Reh. The core of the simulation domain has a flat velocity profile due to drag
associated with the submerged pin-fins. As the drag is smaller at lower Reynolds
numbers Reh, the boundary layers close to the bottom and the top are much better

Figure 11. Temperature field in the fluid (a) and the solid (b); GM (black) and FVM (gray); Reh ¼ 1255;

Q ¼ 125W.
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resolved. Nevertheless, the GM cannot resolve the boundary layer correctly. Com-
pared to the FVM it overpredicts the boundary-layer thickness and therefore reduces
the wall friction (Horvat [17]).

Figures 6–13 show the temperature field cross sections at different Reynolds
numbers Reh. The temperatures are in degrees Celsius. Figures marked (a) present
the temperature field in fluid flow, whereas figures marked (b) reveal the temperature
field in the solid structure; black lines mark isotherms calculated with the GM,
whereas gray lines mark isotherms calculated with the FVM. Comparisons show that
the form of isotherms as well as the absolute temperatures are close together.
Larger differences occur close to the bottom due to different thermal boundary
conditions.

It is evident that the lowest temperature in the air flow is at the beginning of the
heat sink; this is on the left side. Temperature raises as the air passes through the
heat-exchanging structure. Therefore, the highest temperatures are expected at the
exit; this is on the right side. The temperature field in the solid structure is more
vertically stratified as the heat enters the structure from the bottom. As a con-
sequence, the lowest temperature in the solid phase is in the upper left corner and the
highest at the bottom.

Figure 12. Temperature field in the fluid (a) and the solid (b); GM (black) and FVM (gray); Reh ¼ 1593;

Q ¼ 125W.
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The heat flux is a vector perpendicular to the isotherms and therefore a qua-
litative picture of heat flow can be extracted from the calculated temperature fields. It
can be seen from Figure 8 that most of the heat is transferred from the solid to fluid
in the first half of the test section. The highest heat fluxes appear in the lower left
corner, where the temperature gradients are the largest. Figures 6–9 reveal that at
low Reynolds numbers, the temperature field is not fully developed. This means that
the air which enters the test section is quickly heated due to its low velocity and
leaves the heat sink at the temperature of the solid phase, unable to receive addi-
tional heat from the source. With increasing Reynolds number Reh, the state of
thermal saturation diminishes (Figure 10).

The coolant flow lowers the temperature of the heat-conducting structure
unequally. This directly changes the form of isotherms. The effect is not so evident at
low Reynolds numbers (Figures 6–8). On the contrary, when the Reynolds number
Reh increases (Figures 9–11), the isotherms become tilted, showing the increasing
vertical thermal stratification of the coolant flow.

Figures 10–13 reveal that at current Reynolds numbers the GM already
exhibits oscillations on the test section inflow. The oscillations originate from the
thermal boundary conditions [Eq. (25)], which form a step function. Such a function
is not analytic, therefore the approximation with a series of trigonometric functions

Figure 13. Temperature field in the fluid (a) and the solid (b); GM (black) and FVM (gray); Reh ¼ 1862;

Q ¼ 125W.
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produces oscillations. As the GM still predicts the temperature field with the same
accuracy as the FVM in the first half of the simulation domain, the increasing
Reynolds number Reh causes differences between both solutions toward the end of
the test section. Nevertheless, the differences for the tested range of Reynolds
numbers Reh were not higher than 5% of the whole-section temperature increase
Tg7Tin.

6. CONCLUSIONS

The article represents a contribution to conjugate heat transfer modeling. In
this work the volume averaging technique (VAT) was tested and applied to the
simulation of air flow through an aluminum (Al) chip heat sink. The constructed
computational algorithm enables prediction of cooling capabilities for the selected
geometry. Using the VAT, the computational algorithm is fast-running, but still able
to present a detailed picture of temperature fields in air flow as well as in the solid
structure of the heat sink.

In the frame of the work performed, the VAT basic rules were used to develop
a specific form of the porous media flow model. As the flow variables were averaged
over the representative elementary volume (REV), local momentum and thermal
interactions between phases had to be replaced with additional models. To close the
system of transport equations, reliable data for interphase transfer coefficients were
found in Launder and Massey [18], Žukauskas and Ulinskas [20], and Kays and
London [19].

The geometry of the simulation domain and the boundary conditions followed
the geometry of the experimental test section used in the Morrin-Martinelli-Gier
Memorial Heat Transfer Laboratory at the University of California, Los Angeles.
The calculations were performed at three different heating powers, Q¼ 50, 125, and
220W, and eight different pressure drops Dp. The imposed pressure drop achieves
coolant flow of Reynolds number Reh from 159 to 1,862. The semianalytical
Galerkin method (GM) was developed for solving the equations. Although the GM
is a well-established technique, it has not been used for conjugate heat transfer
problems in heat exchanger geometries.

The calculated whole-section drag coefficient Cd and Nusselt number Nu were
compared with FVM results and with the experimental data of Rizzi et al. [21] to
verify the computational model. The comparison shows good agreement between
GM and FVM results. The experimental data exhibit up to 10% difference through
the whole computational range of Reynolds numbers Reh, which is believed to be a
consequence of systematic modeling or experimental error.

The detailed temperature fields in the coolant flow as well as in the heat-
conducting structure were also calculated and compared with FVM results. The
calculated temperature fields in the fluid and the solid reveal up to 5% discrepancy
between the two methods, although different thermal boundary conditions at the
bottom were used.

The present results demonstrate that the selected Galerkin approach is capable
of performing heat exchanger calculations where the thermal conductivity of the
solid structure has to be taken into account.
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