Verification and Quality Assurance in the Simulation Analysis Process

Andrei Horvat, MMI Engineering Ltd Quality & Reliability of CFD Simulations Warwickshire, April 2014

Who We Are

MMI provides scientific, engineering, safety and risk management consulting services

Service areas

- Safety & Risk Management
- Major Hazards Modelling
- Major Hazards Engineering
- Structural Analysis, Design and Integrity
- Fluid System Modelling and Design

Sectors

- Oil and Gas/Petrochemical
- Clean Energy (Wind, Tidal, Waste-to-Energy, Carbon CS, Geothermal)
- Nuclear (Decommissioning, New Build, Transport, Fusion)
- Utilities (Water and Power generation industry)
- Security & Defence

MMI Today

- More than 100 Personnel
 - 30 in US, 65 in UK, 7 in AUS
- Engineers
 - Structural, mechanical, safety, electrical, process, chemical, fire protection
- Scientific
 - Physicists, chemists, mathematicians
- Support
 - Graphics and AV media

- Approximately 30% qualified to PhD level, majority of remainder MSc
- Close relationships with Regulators
- Research initiatives Industry wide developments, JIP's, TSB
- Design, construction and operational experience
- Comprehensive analytical capability
 - Finite Element Analysis
 - Computational Fluid Dynamics
 - Hazard Modelling
 - System Analysis

www.nafems.org

MMI Engineering Locations

- USA started Feb 2001
 - Houston, San Francisco, Los Angeles, Boston
- UK started May 2002
 - Warrington, Aberdeen, Bristol, Northern Ireland, York, London
 - Malaysia
 - Kuala Lumpur, Ipoh
- Australia started 2008
 - Perth WA

Covering major time zones

www.nafems.org

Part of Geosyntec group

We bring a strong reputation for technology innovation and solving complex problems for our clients.

UNITED KINGDOM Aberdeen Teeside

IRELAND

Geosyntec Consultants MMI Engineering SiRem Labs GSM Consultancy EnviroGroup

Offices in Principal Cities in North America and Select International Locations

MALAYSIA

Tools

Structural/Stress Analysis

- ABAQUS, ANSYS , DYNA USFOS, CAP, SACS, STAAD, Code-Aster
- Dispersion, Ventilation & Fire Modelling
 - FRED, PHAST, CIRRUS, CFX, Kameleon KFX
- System Analysis
 - FlowMaster, RELAP5, MELCOR, ICARE/CATHARE, Aspen

- Fluids Engineering
 - CFX, Fluent, FLACS, openFOAM, Code-Saturne
- Explosion Modelling
 - CAM, PHAST, CEBAM, FLACS, AutoReaGas
- Risk Management
 - BowtieXP, FaultTree+ RiskVu, SPAR-H

Content

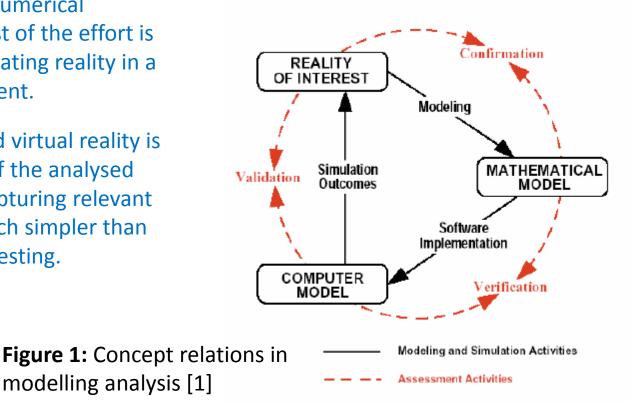
- Introduction
- Project and analysis objectives
- Input control
- Process quality assurance
- Client communication and conclusions

Introduction

Simulation analysis process is used increasingly in the engineering world to complement experimental and testing programmes or even to substitute them.

The reasons for this are economic as the simulation techniques offer

- greater flexibility in managing 'testing' environment,
- a faster turn-around time,
- more comprehensive post-processing options,
- lower costs.


In some cases, safety considerations make physical testing impractical all together (e.g. fire engineering, nuclear safety, space equipment design).

Introduction

Despite all these advantages, it is important to recognise that the simulation process is fundamentally different from physical experimentation and testing.

- In the world of numerical simulations, most of the effort is focused on recreating reality in a digital environment.
- Once the created virtual reality is representative of the analysed environment, capturing relevant data is often much simpler than during physical testing.

Introduction

Although, the simulation analysis approach offers much larger flexibility, it also allows much larger errors to be incorporated in the development process much faster.

To avoid mistakes and to mitigate their impact (some of them will inevitably stay undetected), suitable quality assurance (QA) processes need to be set up and implemented with full rigor.

Such QA processes are well established part of the engineering design and manufacturing procedures, but they do not always extend to the engineering analysis although the related requirements have been defined (ISO-9001, 10CFR50 Appendix B, 10CFR21and NQA-1).

Project and analysis objectives

The analysis objectives must be clearly defined and agreed between all stakeholders. Such definitions shall be qualitative and quantitative (as much as possible).

What the beta

testers received

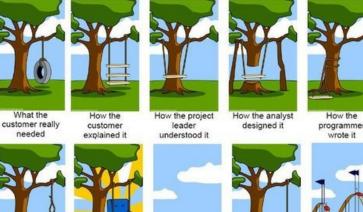
How it was

supported

Figure 2:

How the

business


consultant

described it

What marketing

advertised

- The analysis output; its content as well as its form.
- Clear separation between the design process and analysis objectives.
- The analysis objectives have be propagated from top to bottom. The executing analyst/engineer has to understand the analysis objectives (i.e. what had been sold).

How the project

was

documented

When it was

delivered

How the

customer was

billed

effect can do to your site

What operations

installed

recover plan

www.nafems.org

Project and analysis objectives

Quality parameters (e.g. modelling uncertainty, numerical errors, results variability and sensitivity) shall be an integral part of the analysis objectives.

The input control process consists of

- Toolset control (e.g. knowledge base, hardware, software)
- Personnel (e.g. suitable degree level, skills and experience)
- Analysis and quality control procedures (e.g. lumped parameter modelling, CFD)
- Project specifications and requirements

Most of these activities are generic and applicable to different projects. They are time consuming and therefore have to be accomplished prior to the analysis task start-up.

Validation and verification of the declared software capabilities is an integral part of the input QA control, which **may be shared** with software vendors.

Well documented cases (i.e. benchmarks) with understood physics and high accurate predictions shall be used to independently **validate** and **verify** the declared software capabilities.

Validation is the process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model [2].

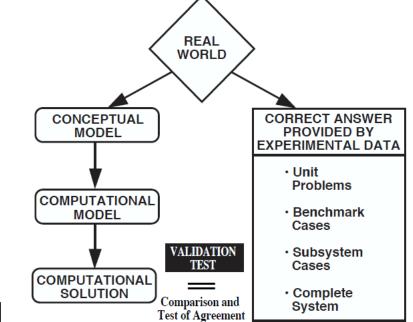


Figure 3: Validation process [2]

 Verification is the process of determining that a model implementation accurately represents the developer's conceptual description of the model and the solution to the model.

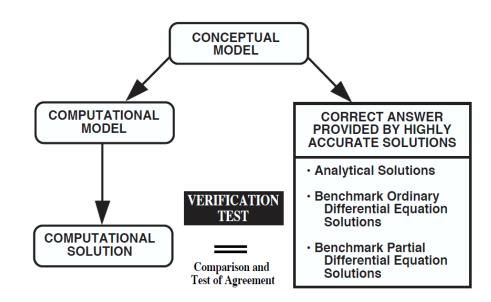


Figure 4: Verification process [3]

CFD community started to look into validation and verification problems some time ago. First papers started to appear in 1970s [4].

At present, the discipline is well defined. The methodology and the associated terminology have been accepted [5].

A number of online resources (e.g. ERCOFTAC, NASA, Uni. Manchester) are available specifically for validation of software tools offering experimental databases, conferences and periodic exercises.

The available pool of experimental data is strongly focused on turbulence modelling problems.

As the modelling is becoming increasing complex and coupled (e.g. turbulence, multiphase, combustion, structural mechanics, electro-magnetics etc), the supporting experimental data and theoretical investigations are simply missing.

Commercial software vendors may assist in the validation and verification process; they should not be a primary source of it.

It is important to assure independence of the software validation and verification and/or to preform in-house testing (which also includes the user-component).

Certain degree of modelling analysis "prototyping" will always be required on individual project basis.

Recent EFDA sponsored 3PT project [8] examined readiness of available modelling software tools for coupled analyses in fusion technologies taking into account:

- Pre-processing capabilities
- Simulation methods
- Fluid mechanics
- Heat transfer
- Multiphase modelling
- Structural mechanics

- Multibody mechanics
- Electromagnetics
- Neutronics
- Parallel processing
- Post-processing and visualisation

A number of benchmark cases have been defined covering some of the relevant analysis areas.

	WALL BOILING	TEST NO 7	DATE / ISSUE 2013/07/26	MATERIAL PROPERTIES	Material properties of water - vapour mixture covering the pressure range between 1 and 2 bar, and the temperature ra between 30°C of subcooling and the saturation conditions.
ORIGIN	PPPT project				A limited set of experimental cases [2] is selected with
ANALYSIS TYPE	Multiphase, boiling analysis			LOADING	 inlet mass flux G_{in} = 715.2, 714.4, 716.4 kg m⁻² s⁻¹ inner wall heat flux q_i = 139.1, 197.2, 232.4 kW m⁻²
OBJECTIVES	Testing of vapour volume fraction dist	ribution		INITIAL CONDITIONS	Due to the steady-state nature of the boiling heat transfer cas initial conditions are not important. They should be used to enhance stability of the solution procedure.
L				BOUNDARY CONDITIONS	At the inlet, the following mass flux values and subcooling temperatures used in the experiments [2] are prescribed: • $G_m = 715.2, 714.4, 716.4 \text{ kg m}^2 \text{ s}^{-1}$ • $T_{sub} = 12.0, 13.8, 14.9 \text{ °C}$ At the outlet, a fix pressure should be set. It has to be adjusted meet the requested inlet subcooling conditions. Due to press dependence of the boiling location, it may be more suitable to imposed fix total pressure conditions at the inlet and mass flut the outlet. At the inner wall, fix heat flux values are prescribed: $q_i = 139.1, 197.2, 232.4 \text{ kW/m}^2$ The external wall can be kept adiabatic.
-				mesh although other mesh ty Maximum grid spacing shoul	in simple geometries are most often performed using a hexaher pes are not discouraged. Id be below 0.01 m in the vertical direction, and below 0.0004 ngential direction, a finite volume should not cover an angle t
Annular domain hei Heating section hei	5 ()			It is expected that mesh indep	pendency of the simulation results is demonstrated.
Distance to the mea Outer radius of the i	isuring plane (L_m) is 1.610 m inner tube (R_i) is 0.0095 m puter tube (R_o) is 0.01875 m			The exper fraction, lic below.	imental results cover the radial distribution of water vapour volution and vapour velocity at the plane elevation $L_{\rm m}.$ They are s
				above liste	lling results should be compared with the experimental data for descent of parameters (i.e. inflow max flux G_i , subcooling tempe e wall flux q_i).

Figure 5: Benchmark case for boiling flow (just a couple of pages) [8]

www.nafems.org

Periodic review of available personnel / analysts, their skill sets and capabilities shall not be forgotten.

The problems are related to

- Frequent and significant software changes (e.g. each year)
- Frequent career changes (internal and external)

In most cases, a suitable analysis process has to be identified prior to the start of the project.

This means that the commercial, design and analysis teams need to work together in preparation of the analysis specifications.

Key performance indicators need to be defined. They can be

- commercial (hourly rate, profit level),
- technical (method implementation, results accuracy),
- scientific (novel approach),
- client satisfaction.

The process plan needs to be **simple as possible** and to allow feedback as the analysis work progresses.



Figure 6: Typical Gantt diagram for CFD analysis

Task ownership has to be established, associated project interfaces agreed and set up.

Personal preference to task lists (e.g Excel or on-line) that allow instant feedback.

CFD Analysis of Particle Sampling in MEMS					
	Stage 1: Preparation stage	Completed			
1	(AH – 2014/03/30) Discuss and define operating conditions.				
2	(AH – 2014/03/30) Define appropriate meshing strategy (AH – 2014/03/30) AH & PW discussed: (a) the extent of the simulation domain, (b) how to split the domain, (c) where to use tets or hexas	(AH – 2014/03/30)			
3	(AH – 2014/03/30) Clean both CAD for both geometries				
4	(AH – 2014/03/30) Prepare the starting statement.				
5	(AH – 2014/03/30) Send to the client the starting statement and the clean CAD models.				
6	(AH – 2014/03/30) Mesh CAD models				
	Stage 2: CFD analysis of particle distribution for 2 inlet design variations	Completed			
7	(AH – 2014/03/30) CFX setup – steady-state fluid only analysis. This has to be performed for 2 models.				
8	(AH – 2014/03/30) Perform CFX simulation for 2 geometries and a single				

Figure 7: Interactive task list

Quality control plan needs to be established. It controls if, how and to what extent the key performance indicators are met.

On the technical level, **analysis check lists** can importantly contribute to clarity of the inspection categories and the related qualitative and quantitative analysis parameters:

General

- Analysis information
- Review information
- Analysis report
- Analysis files

CFD analysis

- Analysis objectives
- Geometry
- Meshing
- Model selection & strategy
- Model preparation
- Analysis results
- Analysis validation
- Data archiving

Analysis report

- Front sheet
- General
- Introductory section
- Main section
- Final section

Review notes

- Review 1
- Review 2

www.nafems.org

required. The ordinary 'Thermal Model' would suffice.

Is the analysis interested in steady-state or transient behaviour	Status: Steady- state
Symmetry flow conditions expected	Status: Yes
Vertical pressure variation considered Reviewer (2014/01/18): The analysis is interested in heat transfer. Even when pressure distribution is required, the vertical hydrostatic contribution will be small.	Status: Not required
MODEL PREPARATION	
Units (especially in the expressions and the additional model code) are consistent	Status: Yes
Material properties and related models are well defined and appropriate Reviewer (2014/01/18): The CFD analysis is isothermal (i.e. all wall boundaries are adiabatic). Therefore, the temperature level is unknown as well as its effect on the material properties.	Status: Cannot be determined
All important thermal effects are represented or their omission explained	Status: No

Figure 8: Section of an example CFD checklist

Quality control plan tracks all phases of the project execution.

In helps in recording evolution of quality concerns and eventually resolving the problems. It needs to be a **living document**.

After completion, **project performance** review helps improving efficiency and quality (e.g. accuracy) of the overall analysis process.

Its findings have to be fed back to update the analysis processes and the corresponding quality plans.

Client communication and summary

- Principles of quality assurance process applied to the engineering analyses does not only improve the quality of the output (i.e. higher results accuracy, less variability, better repeatability), but also **reduces the commercial risks** associate with analysis complexity.
- Technical aspects of the quality assurance plan need to be communicated to the client (either internal or external).
- It is important that the client understands the accuracy of the analysis results and possible impact of the input parameter variations.
- Overstating the accuracy of the analysis results may have serious consequences. The results uncertainty is an integral part of the deliverable.
- Although, available computational resources may allow, a more detailed picture shall not become a substitute for results accuracy and/or their variability.

Thank you

References

- B. H. Thacker, S. W. Doebling, F. M. Hemez, M. C. Anderson, J. E. Pepin, E. A. Rodriguez, Concepts of Model Verification and Validation, Report LA-14167-MS, Los Alamos National Laboratory, October 2004.
- 2. W. L. Oberkampf, T. G. Trucano, Verification and Validation in Computational Fluid Dynamics, Report SAND2002 0529, March 2002.
- AIAA. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, American Institute of Aeronautics and Astronautics, AIAA-G-077-1998, Reston, VA, 1998.
- 4. D. R. Chapman, H. Mark, M. Pirtle, Computer vs. Wind Tunnels, Astronautics & Aeronautics, Vol. 13, No. 4, 1975, pp. 22-30.
- 5. P. J. Roache, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, Albuquerque, NM, 1998.
- 6. H.W. Coleman, F. Stern, Uncertainties and CFD Code Validation, J. Fluid Engineering, 1997, Vol. 119, pp. 795-803.

References

- 7. A. Horvat, I. Kljenak, J. Marn, On Incompressible Buoyancy Flow Benchmarking, Num. Heat Transfer, Part B: Fundamentals, 2001, Vol. 39, No. 1, pp. 61-78.
- 8. C. Jones, A. Horvat, M. Porton, E. Surrey, Evaluation of CAD-based computational tools for engineering analysis, EFDA WP13-DTM-01, WP12-DTM01-001.

