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Introduction 

The simulation methodology specifically developed for a mainstream commercial 

CFD toolset: 

• behaviour of LNG spills from their initial release 

• spreading on the water surface 

• Rapid Phase Transition (RPT)  

• subsequent dispersion 

Robustness of the combined approach is unique! 
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Introduction 

A complex release scenario in a framework of a commercial project - an LNG spill 

between FLNG vessel and LNG carrier  

• calculate the size of the flammable cloud 

• determine the resulting overpressure due to an RPT event 

Particular interest for deterministic risk assessment in the expanding LNG sector 
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Introduction 

Project results used in a highly selective manner  

• demonstrates modelling principles 

• avoids commercial sensitivity of specific findings 
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Scenario description 

• Proximity of both vessels - shape and propagation rate of the LNG layer, and the 

subsequent gaseous cloud 

• Failure in the FLNG process train with an LNG release rate of 1020 kg/s and the 

duration of 76.2 s 
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loading arms 

FLNG vessel 

LNG carrier 

LNG carrier moored alongside  

an FLNG vessel 



Scenario description 

• Agreed LNG composition: CH4 - 78.76, C2H6 - 12.31 and C3H8 - 8.93 mass % 

• The sea and air temperature set to 25°C, with the wind speed of 0.5 m/s at the 

reference height of 50 m 
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Liquid layer dynamics 

Dispersion simulations  

• prediction of cloud behaviour 

• large simulation domains 

Liquid layer  

• just few millimetres thick 

• very fine grid spacing needed 

Local liquid surface instabilities  

• small time-steps required 

 

These constrains make such  

CFD simulations prohibitively  

expensive! 
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2D approximation of the liquid layer  

coupled to a larger, 3D ambient 

domain for dispersion analysis 

solution 



Liquid layer dynamics 

General purpose CFD codes require multiphase formulation  
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Liquid layer dynamics 

Multiphase formulation of the liquid layer  
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ℎ𝐿𝑁𝐺 = 𝑟𝐿𝑁𝐺ℎ𝑙𝑎𝑦𝑒𝑟 

 applicable in most of general purpose CFD codes 

• Definition of liquid fraction  (𝑟𝐿𝑁𝐺) in a 2D multiphase domain 

• The rest of the 2D multiphase domain (1-𝑟𝐿𝑁𝐺) occupied by entrained air 



Liquid layer dynamics 

Source approximation 
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• LNG release height (ℎ𝑟𝑒𝑙) determines the liquid velocity at the point of contact with 

water 

 

 

• The initial point of a spreading LNG layer defined as a volumetric source with the 

diameter (𝑑𝑠𝑜𝑢𝑟𝑐𝑒) 

                     𝑟𝐿𝑁𝐺@𝑠𝑜𝑢𝑟𝑐𝑒 =
𝑚 𝐿𝑁𝐺@𝑟𝑒𝑙

ρ𝐿𝑁𝐺𝑢𝐿𝑁𝐺@𝑠𝑜𝑢𝑟𝑐𝑒 0.25𝜋𝑑𝑠𝑜𝑢𝑟𝑐𝑒
2  

    It determines the LNG volume fraction of the source (𝑟𝐿𝑁𝐺@𝑠𝑜𝑢𝑟𝑐𝑒). 

𝑢𝐿𝑁𝐺@𝑠𝑜𝑢𝑟𝑐𝑒 = 2𝑔ℎ𝑟𝑒𝑙 



Liquid layer dynamics 

Source approximation 
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0.8 m source 

Location of the liquid layer source between two vessels 



Liquid layer dynamics 

Source approximation 
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• Preservation of kinetic energy: 

 

 

 

• Definition of the appropriate height of the liquid layer simulation domain: 

  

𝑢𝐿𝑁𝐺@𝑠𝑜𝑢𝑟𝑐𝑒 =
𝑚 𝐿𝑁𝐺@𝑟𝑒𝑙

ρ𝐿𝑁𝐺𝑟𝐿𝑁𝐺@𝑠𝑜𝑢𝑟𝑐𝑒 0.25𝜋𝑑𝑠𝑜𝑢𝑟𝑐𝑒
2 =

𝑚 𝐿𝑁𝐺@𝑟𝑒𝑙

ρ𝐿𝑁𝐺𝑟𝐿𝑁𝐺@𝑠𝑜𝑢𝑟𝑐𝑒 𝜋𝑑𝑠𝑜𝑢𝑟𝑐𝑒ℎ𝑙𝑎𝑦𝑒𝑟
 

ℎ𝑙𝑎𝑦𝑒𝑟 = 0.25𝑑𝑠𝑜𝑢𝑟𝑐𝑒 



• Multiphase formulation of the mass transport equation for LNG  

 

 

 

• Complimentary transport equation for the ambient air volume fraction 

Liquid layer dynamics 
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Spreading of the liquid layer 

𝜕𝑡 ρ𝐿𝑁𝐺𝑟𝐿𝑁𝐺 + 𝜕𝑖 ρ𝐿𝑁𝐺𝑟𝐿𝑁𝐺𝑢𝑖 =
𝑚 𝐿𝑁𝐺@𝑟𝑒𝑙

ℎ𝑙𝑎𝑦𝑒𝑟 0.25𝜋𝑑𝑠𝑜𝑢𝑟𝑐𝑒
2  

𝜕𝑡 ρ𝑎𝑚𝑏𝑟𝑎𝑚𝑏 + 𝜕𝑖 ρ𝑎𝑚𝑏𝑟𝑎𝑚𝑏𝑢𝑖 =
𝑚 𝐿𝑁𝐺@𝑟𝑒𝑙

ℎ𝑙𝑎𝑦𝑒𝑟 0.25𝜋𝑑𝑠𝑜𝑢𝑟𝑐𝑒
2

ρ𝑎𝑚𝑏

ρ𝐿𝑁𝐺

1 − 𝑟𝐿𝑁𝐺@𝑠𝑜𝑢𝑟𝑐𝑒

𝑟𝐿𝑁𝐺@𝑠𝑜𝑢𝑟𝑐𝑒
 

For the presented model, the homogenous multi-phase formulation was selected. 



Liquid layer dynamics 

Spreading of the liquid layer 

15 

Liquid volume fraction distribution 20 s from the start of the release  
for one of the tests 



Liquid layer dynamics 

Domain interface exchange  
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Coupling between the liquid layer and the ambient domain via source terms: 

• volumetric source terms in the 2D liquid layer domain 

• interface source term in the ambient domain 

 

Asymmetric approximation of mass exchange between the liquid layer and the 

ambient domain: 

 

 

 

  

𝜕𝑡 ρ𝐿𝑁𝐺𝑟𝐿𝑁𝐺 + 𝜕𝑖 ρ𝐿𝑁𝐺𝑟𝐿𝑁𝐺𝑢𝑖 = ⋯−
𝑗𝑒𝑣𝑎𝑝

ℎ𝑙𝑎𝑦𝑒𝑟
 

𝜕𝑡 ρ𝑎𝑚𝑏𝑌𝑘 + 𝜕𝑖 ρ𝑎𝑚𝑏𝑌𝑘𝑢𝑖 = ⋯+ 𝑌𝑘
𝑗evap

ℎ𝑙𝑎𝑦𝑒𝑟
 



Liquid layer dynamics 

Domain interface exchange  
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Sensitivity of the 2D liquid layer domain to mass source and sink terms 

• compensation of volume outflow rate associated with LNG boiling  

• source term for the ambient air volume fraction in the liquid domain 

 

 

 

• source term for the momentum transport equation for the gaseous phase 

 

 

 

These additional source terms are only required due to the multiphase formulation; 

they may not be required if the shallow water or VoF models are available.   

 

𝜕𝑡 ρ𝑎𝑚𝑏𝑟𝑎𝑚𝑏 + 𝜕𝑖 ρ𝑎𝑚𝑏𝑟𝑎𝑚𝑏𝑢𝑖 = ⋯+
𝑗𝑒𝑣𝑎𝑝

ℎ𝑙𝑎𝑦𝑒𝑟

ρ𝑎𝑚𝑏

ρ𝐿𝑁𝐺
 

𝜕𝑡 ρ𝑎𝑚𝑏𝑟𝑎𝑚𝑏𝑢𝑗 + 𝜕𝑖𝑢𝑖 ρ𝑎𝑚𝑏𝑟𝑎𝑚𝑏𝑢𝑗 = ⋯− ρ𝑎𝑚𝑏𝑟𝑎𝑚𝑏𝑢𝑗
𝑢𝑖

ℎ𝑙𝑎𝑦𝑒𝑟
+ ρ𝑎𝑚𝑏𝑟𝑎𝑚𝑏𝑢𝑗

𝑢0
ℎ𝑙𝑎𝑦𝑒𝑟

 



Liquid layer dynamics 

Domain interface exchange  
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Results of a model test using a constant LNG evaporation mass flux 𝑗𝑒𝑣𝑎𝑝 of 0.2 kg/m2s 



Boiling regimes and RPT 

LNG saturation temperature at atmospheric conditions is -162oC  

19 

 in contact with water it starts to boil 

• evaporation mass flux (𝑗𝑒𝑣𝑎𝑝) in different LNG boiling regimes  

• 𝑗𝑒𝑣𝑎𝑝 of 0.02 and 0.3 kg/m2s have been recorded  

• constant evaporation mass flux approximation and Rapid Phase Transition (RPT) 

• introduction of different boiling regimes in the modelling procedure  

 



Boiling regimes and RPT 

Rapid Phase Transition (RPT) is the result of the LNG layer superheating 

20 

• instantaneous release of thermal energy when maximum superheating reached 

• formation of a pressure wave 

 

 

 

initial 

saturation 

conditions 

LNG temperature - enthalpy diagram with marked initial saturation conditions, super-
heating, RPT and further heating of the gaseous LNG 



Boiling regimes and RPT 

Boiling diagram relates the temperature difference (𝑇𝑤𝑎𝑡𝑒𝑟 − 𝑇𝐿𝑁𝐺) with 

the resulting heat flux to the LNG layer (𝑞𝑒𝑣𝑎𝑝)  
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LNG boiling curve  
(based on Sciance et al, 1967)  

 

transition boiling 

regime 

initial LNG-water 
contact 

max heat flux 

vapour film collapse 

𝑗𝑒𝑣𝑎𝑝 =
𝑞𝑒𝑣𝑎𝑝

∆ℎ𝑒𝑣𝑎𝑝
 

Based on the heat flux 𝑞𝑒𝑣𝑎𝑝, the associated evaporation mass flux is 



Boiling regimes and RPT 

Film boiling regime 
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• evaporation mass flux decreases with the contact time  

• maximum 𝑗𝑚𝑎𝑥 is at the point of the initial LNG jet impingement 

• tracking and recording of the local contact time 

Thermal state of the water surface is not directly included in the current model 

 it needs to be approximated by an empirical correlation 

𝜕𝑡𝑡𝑐𝑜𝑛𝑡 = 𝐻 𝑟𝐿𝑁𝐺 ,    where  𝐻 𝑟𝐿𝑁𝐺 =  
1, 𝑟𝐿𝑁𝐺 > 𝛿

0, 𝑟𝐿𝑁𝐺 ≤ 𝛿
 

• evaporation mass flux in the film boiling regime (US Coast Guard, 1980) 

𝑗𝑓𝑖𝑙𝑚 = 𝑗𝑚𝑎𝑥 − 𝐴𝑡𝑐𝑜𝑛𝑡       where    𝑗𝑚𝑎𝑥 = 0.38 
𝑘𝑔

𝑚2𝑠
  and  𝐴 = 0.015 

𝑘𝑔

𝑚2𝑠
  



Liquid layer dynamics 

Film boiling regime 
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Contact time simulation test - evaporation mass flux between the vessels after 20 s 

Change in the 

evaporation rate 



Boiling regimes and RPT 

Transition boiling regime 
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• direct contact between LNG and water surface 

• lowest temperature difference determined by the surface temperature 𝑇𝑤𝑎𝑡𝑒𝑟 

• film boiling regime curve & evaporation mass flux as a function of contact time  

contact time (𝑡𝑐𝑟𝑖𝑡) to reach LNG boiling crises 

 

 

• 𝑡 > 𝑡𝑐𝑟𝑖𝑡  heat flux from water to the LNG layer increases to 𝑞𝑚𝑎𝑥 

Vapour film collapses when    

                        (𝑇𝑤𝑎𝑡𝑒𝑟 − 𝑇𝐿𝑁𝐺) ≤ 70 to 80oC     

𝑡𝑐𝑟𝑖𝑡 =
1

𝐴
𝑗𝑚𝑎𝑥 −

𝑞0

∆𝑕𝑒𝑣𝑎𝑝
∆𝑇𝑚𝑖𝑛 1℃ 0.923389   ,  where ∆𝑇𝑚𝑖𝑛 = 80℃ 



Boiling regimes and RPT 

Transition boiling regime 
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• LNG evaporation utilises only a part of available heat transfer to LNG  

          ∆ℎ𝑒𝑣𝑎𝑝𝑗𝑚𝑎𝑥 < 𝑞𝑚𝑎𝑥      where  𝑞𝑚𝑎𝑥 = 300
𝑘𝑊

𝑚2   and 𝑗𝑚𝑎𝑥 = 0.38
𝑘𝑔

𝑚2𝑠
  

• LNG layer superheating leading to an RPT event 

Transition boiling simulation test - evaporation mass flux between the vessels after 56 s 

Transition boiling  

with LNG overheating 
Film boiling 



Boiling regimes and RPT 

Rapid phase transition 
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• 𝑇𝑚𝑎𝑥 was set to 191 K as proposed by Melhem (2006) for a similar LNG composition 

• sensible heat in the form of LNG superheating is released causing rapid evaporation 

 

 

 

      where ℎ𝑠𝑢𝑝𝑒𝑟 = 𝑐𝑝 𝑇𝐿𝑁𝐺 − 𝑇𝑠𝑎𝑡  

• evaporation mass flux limited by sonic speed of the surrounding gas 

Triggering of an RPT event when 𝑇𝐿𝑁𝐺 reaches 𝑇𝑚𝑎𝑥 

𝜕𝑡 ρ𝐿𝑁𝐺𝑟𝐿𝑁𝐺 + 𝜕𝑖 ρ𝐿𝑁𝐺𝑟𝐿𝑁𝐺𝑢𝑖 = ⋯−
𝑗𝑅𝑃𝑇
ℎ𝑙𝑎𝑦𝑒𝑟

 

𝜕𝑡 ρ𝐿𝑁𝐺𝑟𝐿𝑁𝐺ℎ𝑠𝑢𝑝𝑒𝑟 + 𝜕𝑖 ρ𝐿𝑁𝐺𝑟𝐿𝑁𝐺𝑢𝑖ℎ𝑠𝑢𝑝𝑒𝑟 = ⋯−
𝑗𝑅𝑃𝑇
ℎ𝑙𝑎𝑦𝑒𝑟

∆ℎ𝑒𝑣𝑎𝑝  

𝑗𝑅𝑃𝑇 = 𝜌𝑔𝑎𝑠𝑐𝑔𝑎𝑠   where  𝑐𝑔𝑎𝑠 = 𝛾𝑅𝑇𝑠𝑎𝑡 



Boiling regimes and RPT 

Rapid phase transition 

27 

RPT simulation test - evaporation mass flux between the vessels after 55.4 s 

Low mass flux due to the 

continuing LNG release 
High mass flux  

due to RPT 



Boiling regimes and RPT 

Nucleate boiling 
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• LNG superheating (ℎ𝑠𝑢𝑝𝑒𝑟) decrease to zero  RPT concludes 

• remaining LNG is well mixed with water   nucleate boiling regime 

• small temperature difference  direct contact between LNG and water 

• maximum evaporation mass flux (𝑗𝑚𝑎𝑥)  



• Transfer of evaporation mass flux from the liquid layer to the gaseous 

ambient domain 

 

• Dispersion of gaseous LNG by the imposed wind velocity field 

 

 

 

Dispersion 
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𝜕𝑡 ρ𝑎𝑚𝑏𝑌𝑘 + 𝜕𝑖 ρ𝑎𝑚𝑏𝑌𝑘𝑢𝑖 = ⋯+ 𝑌𝑘
𝑗𝑒𝑣𝑎𝑝

ℎ𝑙𝑎𝑦𝑒𝑟
 

Imposed initial velocity 
field due to cross-wind 



Dispersion of gaseous LNG cloud mostly depends on its buoyancy 

 

 

 

 

• initially, negatively buoyant gaseous LNG 

• freely flows above the water surface due to higher density 

• cloud needs to heat-up above -108oC to become positively buoyant 

• cloud lift-off strongly enhances its dispersion 

 

Dispersion 
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Dispersion 
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Dispersing cloud of gaseous LNG (1 and 10% mass fraction isosurfaces) after 320 s 



Two main objectives 

• volume of the flammable cloud and its distribution 

• overpressure approximation due to RPT 

 

 

 

 

CFD simulation results and discussion 

Presentation of CFD results only for the process train release case  
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CFD simulation results and discussion 

Flammability limits and volume of the cloud 
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Lower (4.5%) and upper (15%) flammability limit of gaseous LNG at 25oC 
 



 

 

 

CFD simulation results and discussion 
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Flammability limits and volume of the cloud 

Time variation of the gaseous LNG flammable volume 

  
 

duration of  

the LNG release 

• LNG remains present between both vessels longer  

• negative buoyancy of the gaseous LNG and the time required for the cloud lift-off 



CFD simulation results and discussion 

Overpressure approximation 
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• LNG layer superheating constrains an RPT event 

• small amount of LNG involved 

• formation of a pressure wave 

 

 

 

 

 

 effect on the dispersion process is limited 



CFD simulation results and discussion 

Overpressure approximation 
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Pressure wave after the RPT event – overpresure isosurface of 400 Pa 



CFD simulation results and discussion 

Overpressure approximation 
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Cross-section of the over-pressure field (−2 kPa ≤ ∆𝑝 ≤ 2 kPa) after the RPT event  



CFD simulation results and discussion 

Overpressure approximation 
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• maximum overpressure exceeds 110 kPa 

• pressure peaks occur close to the water surface with temperatures near -162oC 

• combination of high pressures and extremely low temperatures 

 

 

 

 

Time variation of the maximum 
overpressure during the RPT event 

 significant risk of structural failure 



Further challenges and conclusions 

• generic approach that can be used in most CFD codes with multiphase flow 

capabilities 

• many modelling simplifications especially in formulating the effects of different 

boiling regimes 

• incomplete data as only a single source for the boiling curve definition is 

available 

• energy transport equation in modelling the LNG liquid layer and quantification 

of heat transfer between the water and the liquid layer 
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Further challenges and conclusions 

• CFD simulation of the FLNG process train failure to  demonstration the capability 

of the developed methodology  

• estimate the size and behaviour of the flammable cloud generated by the LNG 

spill 

• horizontal spread of  the flammable cloud due to negative buoyancy and 

reduction of fire related risk 

• overpressure due to an RPT event exceeds 110 kPa 

• risk of structural failure due to high pressure loading at low temperatures (-162oC)  

 

Need for further parametric studies to determine sensitivity of RPT events and their 

consequences! 
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Thank you ! 
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